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E o In chromatin, the DNA helix is itself helically coiled to form a superhelix, the tightness
= 9) of which affects the transcription accessibility. Elucidation of the possible role of

supercoiling in the control of gene expression requires an.accurate and non-destructive
method to measure superhelix density, and in this paper we show how the sensitivity
of circular dichroism (c.d.) to supercoiling can be exploited. The chromatin c.d. at
270 nm shows a reduction to 45-709, of that of straight, non-supercoiled B-DNA.
This has been attributed variously to secondary structural changes or tertiary
interactions between adjacent superhelical turns. We investigate this effect by
calculating the ratio of the c.d. of supercoiled and of straight DNA as a function of
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454 ALEXANDRA J. MAcDERMOTT

superhelix density with the use of the Tinoco model, but introducing a novel metric
technique to relate c.d. to curvature. Tertiary interactions are shown to cancel one
another, leaving the c.d. of chromatin unchanged, so the observed depression must
arise from secondary structural effects. We investigate c.d. as a function of secondary
structure, and find that base-twisting affects the c.d. much more than base-tilting,
and can produce a strong depression. We therefore introduce a model of supercoiled
DNA with base-twisting in proportion to the local Riemann curvature of the bent
helix, and this reduces the chromatin c.d. to 709, of that of non-supercoiled DNA.
Further reduction to 45 %, is achieved if chromatin forms a left-hand supersuperhelix.
These results suggest that c.d. has considerable potential as a quantitative measure
of supercoiling.

1. INTRODUCTION

In the genetic material chromatin, the DNA double helix is itself helically coiled to form a
left-handed superhelix. This is further coiled to give a supersuperhelix or solenoid (Bram et al.
1975; Finch & Klug 1976; Bradbury 1978; Campbell ¢t al. 1978; Georgiev et al. 1978; Miller
et al. 1978; Thoma et al. 1979), which itself has a higher order structure, being arranged in
loops (Cook 1974; Campbell 1978; Nicolini 1979; Cook ¢t al. 1980) that are grouped into
chromosomes. This hierarchy of coils is not just a convenient device to pack the DNA into the
cell nucleus, but is now known to have important effects on DNA function. In particular, the
superhelical tertiary structure is believed to play a central role in the control of gene expression
(Cook 1974 ; Gampbell 1978; Mirkin ¢t al. 1979 ; Luchnik 1980; Luchnik & Glaser 1981 ; Smith
1981; MacDermott 1982; Lilley 1983), acting as a genetic switch through its effect on
transcription. Supercoiled DNA circles are transcribed much faster than their y-irradiated
(nicked) counterparts (Colman & Cook 1977), because the free energy of supercoiling assists the
local unwinding of the duplex necessary to expose the bases for initiation of transcription. (In
a closed circle, unwinding of the right-handed double helix involves simultaneous unwinding
of the left-handed superhelix (Bauer & Vinograd 1968) and this is favoured by release of
superhelical strain.) It has also been shown (Akrigg & Cook 1980) that the exact degree of
supercoiling, not just its mere presence or absence, affects the rate of transcription and,
moreover, that RNA polymerases from different types of cell prefer different superhelix densities
for optimal operation. It has therefore been suggested (Cook 1974; Denhardt 1979) that genes
relevant to a particular cell are supercoiled to just the required degree to enable the particular
polymerase to expose the bases for transcription by local duplex unwinding, while the rest of
the genome is supercoiled to the wrong degree and thus repressed. Nuclear DNA is constrained
by molecular splices to a series of independent, quasi-circular loops (Cook 1974 ; Nicolini 1979;
Cook etal. 1980; Cook & Brazell 1980), each of which could have a different superhelix density.
Such differential supercoiling of different genes could be created by twisting and untwisting
enzymes such as DNA gyrase and topoisomerase and could be preserved during replication
(Cook 1974) thus providing a heritable genetic switch. Genes would thus be switched on or
off only once, at the moment of cell differentiation, the daughter cells then inheriting the
appropriate differential supercoiling and requiring no further regulation.

Unusually high superhelix densities have been observed in cancer cells (Hartwig & Matthes
1979; Hartwig 1980; Luchnik & Glaser 1981 ; Luchnik etal. 1982), reflecting their characteristic
undifferentiated state with too many genes switched on, and this could find application in
clinical diagnosis (Preumont et al. 1981 ; Luchnik et al. 1982). Hypomethylation has also been
observed in cancer cells (Ehrlich & Wang 1981 ; Feinberg & Vogelstein 1983 a; Lu et al. 1983).
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Methylation of the cytosine bases in DNA is correlated with gene inactivity (Razin & Riggs
1980; Lindahl 1981; Gama-Soza ¢f al. 1983) and it has been suggested that it causes B—~Z
transitions in alternating CGCG sequences, so reducing the density of left-handed superhelical
turns and switching genes off (Nordheim et al. 1981; MacDermott 1982). Carcinogens may
interfere with methylation (Lu ¢t al. 1983), thereby converting left-handed turns stored in the
Z-sections to superturns, resulting in the tightly supercoiled, hypomethylated cancerous state.
The switching on of oncogenes has been implicated in carcinogenesis, and ras oncogenes have
recently been shown (Feinberg & Vogelstein 1983 4) to be hypomethylated in human tumour
cells, which could indicate that these genes are switched on by excessive supercoiling.

Further elucidation of the role of the superhelix in the control of gene expression and
carcinogenesis requires an accurate and non-destructive means of measuring superhelix density.
A major problem is the extreme fragility of the superhelix; most extraction, sample preparation,
and observation techniques are liable to nick the DNA, thus releasing the supercoiling. A new
gentle lysis method (Cook & Brazell 1975, 1976) has been developed to extract supercoiled
‘nucleoid’ DNA intact from cells, but techniques to measure superhelix density still leave much
to be desired. Sedimentation has limited accuracy and can be destructive, X-ray and electron
diffraction are still more destructive, and neutron scattering is expensive and complex. The
most striking feature of the superhelix is the additional chirality it confers on the already chiral
DNA helix, so optical activity immediately suggests itself as a simple, non-destructive, and
inexpensive means of detecting supercoiling. Circular dichroism (c.d.) has the advantage of
providing a direct window onto the DNA, whose bases absorb in a separate spectral region
(260—280 nm), whereas in neutron scattering, special D,O techniques are needed to make the
DNA show up against the histones around which it is wrapped in chromatin.

€€R

B-DNA-
chromatin 7

260 nm

Ficure 1. Experimental c.d. spectra of pure B-DNA in solution at zero superhelix density o, supercoiled
DNA in solution with o = —0.023, —0.044, and chromatin.

The few available c.d. spectra of supercoiled DNA do indicate a strong dependence on
superhelix density, but there is disagreement as to its cause, and theoretical understanding has
hitherto been insufficient to exploit the effect as a quantitative measure of superhelix density.
The experimental spectra, summarized schematically in figure 1, fall into two categories; first
those of pure DNA in solution at low superhelix density, and second, those of chromatin, in
which the DNA is wrapped around the histones at a much higher superhelix density. Maestre
& Wang (1971) and Gray et al. (1978) examined the 280 nm c.d. of bacteriophage DNA circles

30-2
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456 ALEXANDRA J. MAcDERMOTT

and observed increases compared with the corresponding nicked (and therefore unsupercoiled)
circles of approximately 10-15 9%, at superhelix density o & —0.023 superhelix (s.h.) turns per
base pair, and about 259%, for o & —0.044. These authors attribute the increase to a change
in secondary structure, perhaps towards a more A-like form, with increased base-tilt. At the
higher superhelix densities (o & —0.13) found in chromatin, substantial reductions in c.d., to
between 459, (Shih & Fasman 1970) and 70%, (Henson & Walker 1970; Simpson & Sober
1970) of that of straight B-DNA, have been observed. These have also been attributed to
secondary structural change, this time towards the C-form (Permogorov et al. 1970; Matsuyama
et al. 1971; Hanlon et al. 1972). More recently, however, it has been suggested that tertiary
effects, involving interactions between adjacent turns of the superhelix, are responsible for the
reduction (Cowman & Fasman 1978; Fasman & Cowman 1978). Furthermore, the c.d. of
chromatin varies during the cell cycle (Nicolini et al. 1975), and the extra large c.d. reductions
seen during the non-replicative G,- and M-phases have been attributed to quaternary
interactions in the supersuperhelix, which is believed to uncoil for the replicative S-phase, giving
a less depressed c.d. (Nicolini 1979, 1980).

The first objective of this study is therefore to determine whether secondary or tertiary effects
are responsible for the c.d. of the superhelix. It is important to establish the correct secondary
structure, because it is conceivable that supercoiling could influence DNA function not only
topologically, but through any effect it may have on the secondary structure (Luchnik 1980).
The second objective is to provide a theoretical explanation of the experimental spectra, with
a view to developing c.d. as a useful quantitative measure of supercoiling.

Non-c.d. evidence, such as X-ray scattering (Bram 1971; Bram & Ris 1971), infrared
dichroism (Taillandier ¢t al. 1979), nuclease digestion (Noll 1974 ; Kornberg 1977), and energy
calculations (Levitt 1978) all points to chromatin having a B-type secondary structure,
apparently suggesting that tertiary effects are more likely to be responsible for the depressed
chromatin c.d., especially in view of the close proximity of adjacent turns of the superhelix,
which are only 0.6 nm apart in the latest models (Finch et al. 1977; Bradbury 1978). Our initial
calculation of the c.d. as a function of superhelix density in §4 therefore assumes a standard
B-form secondary structure.

In addition to secondary and tertiary effects, one should also consider the effect of curvature.
When the cylindrical DNA molecule is coiled into a superhelix, the cylinder becomes curved,
and the metric and Riemann curvature of its surface are analysed in Appendix 3. We have
calculated elsewhere (MacDermott 1985) the rotational strength of a superhelix using the free
electron model, which is independent of secondary structure and does not admit interturn
interactions. The results show that curvature by itself may have a strong influence on the c.d.
of DNA.

We do not calculate the absolute magnitude of the c.d., but simply examine the effect of
changing geometry, and especially increasing curvature, by calculating the ratio, Ae(x)/Ae(0),
of the superhelix to straight helix c.d. maxima as a function of superhelix density. This ratio
is readily obtained experimentally by examining supercoiled circles before and after nicking
by y-irradiation.
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2. THE EXCITON MODEL OF POLYMER C.D.

We calculate the DNA c.d. on the basis of the widely used Tinoco (1962) exciton model (an
alternative approach, not considered here, involves linear response theory (Rhodes & Redmann
1977; Redmann & Rhodes 1979)).

The circular dichroism,

Ae oc {ROAf(u) — (g*u % Roax(Voax— VOA))f/(u)} > (1)

due to a polymer transition O — A has two parts (Bloomfield ¢t al. 1971). The non-conservative
contribution has the shape of the absorption spectrum, regarded as a Gaussian,

Slw) = (1/2m): e72, (2)

where u = (v —vp,) /0, is the frequency in units of standard deviations, o,, from the absorption
frequency v . The conservative contribution has the shape of the derivative f’(u), and arises
from the splitting of the excited state A into exciton levels A ; corresponding to frequencies v , g

The coeflicient of the non-conservative contribution is the rotational strength, given (for
magnetically forbidden transitions, and neglecting static field terms (Tinoco 1962 ; Bloomfield

et al. 1971)) by

20,\ ¥ o, <, Vion:iob Vb raii
Foa = —( c a) R lzz((;;a2 "_Obyzij“'”job A Pioas 3)
=1 J b b a

in terms of interactions Vo, ;q1, between electric dipole transition moments g;,, and pq, for
different transitions o—-a and o—b on monomers i and j, separated by distance vector R%
within a polymer of N units.

The coefficient of the conservative contribution (Bloomfield et al. 1971),

Z R _ Wy 3y I/;oa,; joa pj
0ak(Voak —Voa) = —c z X R pyo0 A Migas (4)
K T=1j#1%

is of similar form, but arises from interactions between identical transitions on monomers
and j.

In both cases, absorption of a photon by the 7th group can be regarded as inducing virtual
transitions in the other group j, corresponding to exciton jump between groups. We shall see
later that the helicity of exciton jump between chirally disposed groups can provide a physical
picture of the differing optical activities of the DNA helix, superhelix, and supersuperhelix.

If the monomers are far enough apart, the interaction V., o, can be approximated by a
multipole expansion, retaining only the dipole—dipole term to give

I/;oa;job = (1/4":80) .”z'oa' Tij':“job» (5)
where T4 = {1 — 3R¥ R} (R~ 6)
and R¥ is the unit vector along R”. Expression (1) therefore becomes

Ae oc {0 f(u) = O°f" (u)}, (7)
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with the coefficients given by

O™ _ 25 5, ii. gi i
oc = +722j :uioa'T "B /\:ujoa'R s (8)
?
where, in the conservative case,
(Bj)c = :”joa”joa/4n60 /10',, (9)
and in the non-conservative case,
(B = gi(v,) = (2/4me,) 3 HicbHiob Vb (10)

b hE—va)

is the polarizability at frequency v,, which can be approximated by the frequency-independent

polarizability
(Bj)nc ~ aj = (2/411760) Zb/ :ujob :ujob/}wb (11)
ifv, > v,.
Experimental c.d. spectra are commonly measured as a function of wavelength, and if the

bandwidth is not too large, then in (7) we can write f(u) = e™#** ~ e #" = f(w), where

w = (A—A,,) /0, is the wavelength in units of standard deviations, and f’(4) = —f"(w), giving

Ae oc {07 f(w) + O f' (w)}. (12)

3. APPLICATION OF THE EXCITON MODEL TO SUPERCOILED DNA

In specializing the above theory to DNA, we take as chromophores the purine and
pyrimidine bases and consider the c.d. arising from their ©* <- 7 transitions in the 260 nm region.
This system conforms to the basic assumptions of the Tinoco (1962) model; the chromophores
are electronically isolated, and the wavelength of the exciting radiation is large compared with
the distance between interacting chromophores. But the other two approximations in §2,
namely retention of only the dipole-dipole term of the interaction, followed by the so-called
polarizability approximation, requiring v, > v,, are somewhat more problematic. The nearest-
neighbour separation of 0.34 nm along the helix axis may be too close for the dipole
approximation to apply; and because there are four different DNA bases absorbing at similar
frequencies, some of the non-conservative contribution represents interactions with v, and v,
nearly equal. Different authors have adopted various compromises; for example, Moffitt (1956)
used the more complicated monopole approximation for nearest-neighbour interactions,
retaining the simpler dipole approximation for the rest, while Bush & Brahms (1967) used the
monopole approximation for interaction with near-u.v. transitions, and the polarizability
theory for far-u.v. transitions. Because we are interested here in calculating only the ratio
Ae(x)/Ae(0), rather than accurate c.d. magnitudes, we retain the polarizability theory for all
interactions, in the interests of simplicity. We overcome the problem of non-conservative
interactions with v, & v, by introducing the ‘average base’, whose n* <- % transition moment
is a vector average of those of the bases A, T, G, C, weighted according to their abundance
in the DNA. All bases are then identical, so there is effectively only one ‘average’ transition
o—a in the 260 nm region, and interaction between transitions of this type on different
chromophores is now covered by the conservative contribution (that must, however, be
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weighted by a statistical factor (described later) because there are in reality four different bases).
The non-conservative contribution now arises solely from interaction with transitions o—b in
the far-u.v., for which the polarizability approximation is valid.

To calculate Ae(x)/Ae(0), we consider the optical activity of just one turn of the helix and
take at first just one strand, extending later to the double helix. The summation over all groups
¢in (8) then reduces, for a straight, non-supercoiled, helix, to multiplication by £, the number
of bases per turn (10 for B-DNA). We rename the ith group the zeroth group, and examine
the optical activity £/ due to the interaction of the transition moment g;,, = ud(0) (where &(0)
is a unit vector in the direction of the zeroth group’s transition moment, which has magnitude
w) with all transitions, represented by B, on all other groups j. Note that if (B/)"¢ is expressed
in the ‘proper’ frame of the jth chromophore (see Appendix 1), it is diagonal, having non-zero
components By¢, corresponding to the components a,,, &,,, &gy of the polarizability tensor.
Turning to (B%)¢, we see that because Hjop 10 (9) is directed along the x-axis in the proper frame,
the tensor has only one non-zero component,

Bclzl = :ujoa. 'ﬂjoa/éhwo /ZO'V. (13>

A matrix P7 is required to relate the proper frame of the jth group to that of the zeroth group;
so (8) becomes

one — ,
o } = TF (m, u2k/c) X’ &, (14)
1turn J

where
Q' =4(0)T-PIB(P))"1AG(0) RI. (15)

We term the two strands of DNA the T- and V-helices (cf. Rhodes 1961); the zeroth
chromophore of the T-helix is hydrogen-bonded to the zeroth chromophore of the V-helix, the
nth group ny of the T-helix to the nth group ny, of the V-helix, etc. as shown in figure 2. The T-
and V-helices are antiparallel, in the sense of the local orientation of their chromophores being
opposite (see Appendix 1). They are therefore identical and equivalent, but we choose to
number the groups with z increasing in the z-direction of the T-helix, and survey the molecular
geometry from the viewpoint of the O group, so that (14) becomes

Onc 0 (o]

c} =F (211:Va,u2k/c){ 2 QO0p—>np)+ X .Q(OT—>nV)}, (16)
0 1turn n=-00 n=-—00
where Q(0p—>ny) and Q(0p—>ny) represent the intra- and inter-strand interactions
respectively.

The position of each chromophore is defined by its angular coordinate ¢ round the helix;
because all chromophores are equivalent in the straight helix, we may define the phase ¢(0y)
of the Op group to be zero, so that of the 0y group becomes ¢(0y) = —| @y, |, where | ¢y, | is
the phase difference between the helices (the angle between paired bases, see figure 2), and
we take the V-helix to lag behind the T-helix. The phase separations of any two chromophores
Op and 7y or ny are therefore

Ap(0p—>ny) = n2n/k,
Ap(Op—>ny) = nzn/k_|¢bp|7 (17)
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Ficure 2. The T- and V-helices. The line Oy O lies in the plane ABCD.

and their longitudinal separations parallel to the helix axis are
Az(0p—>ny) = np/k,
Az(Op—>ny) = np/k+dy, siny, (18)

where p is the pitch of the helix, dy, is the distance between paired bases, and ¥ is the angle
at which d,, is tilted (figure 2).

In the superhelix, the equivalence of the chromophores is lost; those on the inside of the bent
helix cylinder have different environments from those on the outside, and in fact a helix with
10 groups per turn has 10 inequivalent types of chromophore site. We distinguish these sites
by the label m, which takes the values —4 to +5, so that the optical activity of one turn of
a supercoiled double helix becomes

one +5 © ©
ol —Femges 5 S aopew+ £ oe0pon)),  a9)
1 turn m=—4 \n=—x n=—o

where Q(0% ->ny) represents the interaction between a Oy group of the m-type, and the group
np that differs from it in phase by n2n/k. But what is the phase ¢(0F) of the group OF? The
simplest assumption would be to take ¢ = 0 for an m = 0 group, so that an m-type group has
phase m2m/k. But the true phase might actually be (m2n/k+a), where a is the phase of the

= 0 group, its value depending on the orientation of the helix cylinder on the surface of the
superhelix cylinder. This orientation may be random, in which case, for an ensemble of
superhelices, a will be positive as often as it is negative, giving an average of 0. Alternatively,
o may assume a preferred value which maximizes the neutralization of the inside phosphate
groups, or other favourable interactions with the histones. But as there is no experimental
evidence available, we choose here the most convenient value of a, namely that which preserves
the equivalence of the T- and V-helices, @ = }| @y, | (this may in fact be the ‘preferred’ phase,
as it would not be possible for both helices to assume any other ‘preferred’ phase). The phase
of a zeroth group of m-type is thus defined (see figure 4) as

$(OF) = m2r/k+3| oy |, (20)
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but the phase differences and vertical separations remain the same as in the straight helix, given
by (17) and (18).

We choose to evaluate Q(0% ->ng) and Q(0% —>ny) in the ‘transition’ frame {¢[0, #(07)]}
of the zeroth chromophore (see Appendix 1) as @(0F) then only has one component, the
x-component, which is unity. Equation (15) therefore becomes

Q= a4, le PchccPc_dl efdl a4, Rf’ (21)

where summation over repeated subscripts is implied. €,,,. is the Levi-Civita tensor density,
B is diagonal in its proper frame {[0, ¢ (n)]}, and for simplicity we have dropped superscripts.
Noting that ¢, = 1, and expanding, we obtain

3
Q=3 B,Q, (22)
g=1
where Qy = (TuBgt+ T B+ Tis By) (Bg Ry—Byg Ry). (23)

The planar DNA bases can be regarded as cylindrically symmetrical, so the non-conservative
optical activity becomes
Qe = o {Q +Q,}+ o Q,, (24)

where @) and «; are the in-plane and out-of-plane polarizabilities. Now clearly the optical
activity is zero for spherically symmetric chromophores (a, = «), so it is generally true that

Q,+Q,=-0,. (25)
Therefore the non-conservative optical activity becomes
Qe = —(a;—ay) 2, (26)
while its conservative counterpart is
Q° = Bf, Q,. (27)

P is the matrix which transforms the proper frame {#*[0, ¢(n)]} or {£[0, #(ny)]} of the nth
group back into that of the zeroth, {#![0, ¢(0%)]}. In the straight helix it is simply (see
A ix 1

ppendix 1) P =AM (Ag) SA, (28)
where A=1Lt (29)

rotates the proper frame of a chromophore transition moment into axes radial, tangential and
longitudinal to the helix cylinder, and

ST 1 0 0
= [0 *1 0} (30)
sV 0 0

reverses these axes if a chromophore on the antiparallel V-helix is involved; also
cosAp —sinAgp 0
M1(Ag) = [ sinA¢g  cosA¢ O} (31)
0 0 1

takes account of the phase separation A¢(Op—>ny) or Ag(Op—ny) of the chromophores.
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In the superhelix, the sequence of transformations must take account of the non-zero phases
¢, and ¢, + A¢ of the zeroth and nth groups respectively, and also of their phase difference
around the superhelix,

AD = AzC/R, (32)
where C = cosay, = 2nRx/p, (33)

oy 1s the superhelix angle, R the radius of the superhelix cylinder, and x the superhelix density
in superhelix turns per turn of the helix. (It is convenient to use here the geometrical superhelix
density x = s.h. turns per h. turn; for B-DNA, there are 10 b.p. per turn, and so x is in fact
equal to the conventional superhelix density ¢ = s.h. turns per 10 b.p.). We therefore have

P=A"TW1(0%—~>n)SA, (34)
where W=M(p,+Ap) R M(AD) hM(¢,); (35)
1 0 0
and h= [0 sinetg, cos ash] (36)
0 —cosay, sinog,

rotates the helix frame into the superhelix frame (see Appendix 1).
The distance vector R between chromophores (Appendix 2) is given in the helix frame at

¢ = 0 by
{R"[0] = [0] r(cos A — 1) +1[0] 7 sin Ap + KP[0] Az (37)

for the straight helix, and
{R}"[0,0] = 1[0, 0] {R[cos Ap — 1] —r cos ¢, + 7 cos (¢, + Ap) cos A®
—rsin (¢, +Ag) S sin Ad}
+78[0,0]{RS sin AP — AzSC—rsin g,
+7 cos (¢, +Ag) S sin AD (38)
+7sin (¢, + A¢p) [S? cos AD + C?]}
+KEP[0,0]{RC sin A® + AzS2+7 cos (¢, + Ag) C sin AD
+7sin (¢, +A¢) [cos AD—1] SC}

for the superhelix, where C = cosag,, $ = sinag,, and R, r are the radii of the superhelix and
helix cylinders. We require R in the transition frame at @ = 0, ¢ = ¢, and so incorporate the
transformation

{RY [0,¢,] = A7'M(g,) {R}"[0,0]. (39)

The elements of T are found from the components of R by using (6).

All that remains to be done before 2, and hence "¢ and £2¢, can be evaluated from equations
(22), (26) and (27), is to assign numerical values to the various geometrical parameters of the
DNA molecule. Of these, we consider first the local orientation of the chromophores. The
interacting transition moments are taken as point dipoles (whose directions define the x-axis
of the ‘transition’ frame {#%} (see Appendix 1)) at the centre, M, of the bases; their orientation
6 is normally defined (Bloomfield et al. 1971) with respect to the C,—C, bond for purines, and
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the C4—N, axis for pyrimidines, as shown in figure A 1.3; so we take these bonds as defining
the x-axis #1°¢ of the ‘local’ frame, with k!°¢ pointing in the 3’—5 direction of the sugar
backbone. Figure A 1.2 indicates how the local frame is related to the helix frame by the matrix

L= M) M) (B) M, (7), (40)

where a, £, v are the Euler angles. By using the atomic coordinates of Arnott ¢t al. (1969) for
B-DNA from X-ray data, we deduced (MacDermott 1981) the orientation of the local axes
for purine and pyrimidine; and because DNA contains equal numbers of purine and pyrimidine
bases, a straight vector average gave the orientation of the local axes of the ‘average base’ and
hence the Euler angles o« = —102.79°, § = —6.26°, v = 44.93°. By calculating the coordinates
of the centre M of the average base, it was possible to deduce (MacDermott 1981) the phase
Ppp = —171.52° of the V-helix relative to that of the T-helix, and also the average radius
r = 324.88 pm, and the length dj,, = 648.32 pm of a line joining the centres of paired bases.
This line is tilted (MacDermott 1981) at an angle

¥ = cos™ {cos B[cos® f+sin? B sin? (x— 1y, ) 17H, (41)

where the positive (negative) square root is taken for positive (negative) £, and ¢ = —1.84°
for B-DNA from the data of Arnott et al. (1969).

We now consider the magnitudes of the polarizability and of Bf,, so that the relative
weighting of the non-conservative and conservative contributions to the c.d. can be assessed.
For the polarizability volume of the average base, we adopt the value (¢, —a;) = 0.56 X 1072° m?
used by Bush & Brahms (196%) and originally obtained from Kerr effect measurements (Lefevre
& Lefevre 1955). B, is given by (13), in which g, * #;,, can be related through the oscillator
strength to the extinction coefficient, giving (MacDermott 1981)

BS, = (31n10+/(2m)/8M3L) €, A

max ‘‘a

= (€pax/M? mol™) (A,/m) x 1.16 X 1072%> m3. (42)

Although all chromophores are treated as identical ‘average bases’, there are in reality four
different types; thus pairwise interactions giving a conservative c.d. (i.e. interactions between
identical bases) are much rarer than non-conservative interactions (which can occur between
any two bases). The relative weighting of the non-conservative and conservative contributions
must therefore reflect not only the polymer geometry in the form —£2,/Q,, and the intrinsic
electronic properties of the chromophores in the form («;—«,)/Bf;, but also the relative
probability P(nc)/P(c) of a pairwise interaction producing a non-conservative or a conservative
effect:

Qre/Q° = P(nc) (e, —ay) (—£24)/P(c) Bf, £2;. (43)

P(nc) is clearly unity, as all pairwise interactions produce a non-conservative effect, but since
only identical pairs give a conservative contribution, P(c) is the sum of the probabilities of a
pair constituting either both adenine or both thymine bases, etc., thus,

P(c) = [p(A) PP+ [p(DP+ ()2 + (O] (44)

where p(A), p(T), etc., are the fractions of adenine, thymine, etc., in the DNA. The conservative
contribution is therefore large for artificial DNAs containing all A-T, or all G-C, base pairs,
for which P(c) = }, butis a minimum for the most mixed DNAs (50 %, A-T), for which P(c) = L.
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The statistical factor P(nc)/P(c) thus has an important effect on £2"¢/€° and so the overall
shape of the c.d. spectrum varies with A-T content.
The relative rarity of conservative interactions also affects the averaging process used to

obtain € and A,, and hence BS,, from (42); their effective average values for conservative

max
interactions will be biased more towards those of the most common base than their average

values for non-conservative interactions. Thus, the conservative average is
Cnax = 2 [£(B)]*€?/ 2 [pB)] (45)

(where €B is the extinction coefficient for one of the four bases B, and p(B) the fraction of this
base in the DNA), in contrast to

€nax = 2 $(B) e®/ 2$(B) (46)
for non-conservative interactions.
These different averaging processes also affect the factor u?v, in (19): since p* oC €., A, we
have p?v, o€ €., so the ratio of the non-conservative and conservative coefficients becomes
onc/0¢ = Fre 3 Q./3 2, (47)
where the summation is over all interacting groups and
FR¢ = éhax P(nc) (a1—a)) /€max P(c) By, (48)

Finally, we consider the orientation of the transition moment with respect to the local frame.
For a given base, this is defined by the angle 6 it makes with #1°¢, so the matrix ¢t = M1(6)
takes the transition frame into the local frame (see Appendix 1). The average value of 0 is
given by

0 = tan™ (fi, /i), (49)
and since the magnitude of the average transition moment is proportional to (€, A)3, its
x-component is given by

it ac 3 (eBAP)} cos 67 p(B) /. p(B) (50)
B B
in the non-conservative case and by a process analogous to (45) for the conservative case; the

average y-components ji, are obtained similarly so f"¢ and 6° can thus be determined.
From data (table 1) on the n* <& transitions of individual bases (Bloomfield ef al. 1971)

TaBLE 1. CHARACTERISTICS OF T ¥ < TT TRANSITIONS IN DNA BASES

base A/nm €max/ (dm® mol™ cm™) 6/deg
adenine 260 14900 -3
thymine 270 9700 —19
guanine 275 9000 —6
cytosine 267 9100 12

we calculated F™¢ and 6 for various percentages of A-T, and found that F™¢ varied widely,
from 0.2974 at 1009, A-T, to 0.7091 at 409, A-T, while § varied from 2.96° at 100 %, G—-C
to —10.21° at 1009 A-T, with 1-2° difference between #° and 6" at intermediate
compositions. The DNAs used to produce the experimental superhelix c.d. described earlier
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ranged from 47 to 549, A-T. We therefore assume an average value of 50%, A-T in our
calculations, because #¢ and "¢, and also A® and A", are then conveniently equal, with
6 = —4.08°, and F™¢ = 0.6777. For accurate comparison of theory with experiment, one could
of course take account of the exact A-T content of a particular DNA, by using the methods
outlined above. (For simplicity, we have used only one transition on each of the four bases,
namely that in the important 260-275 nm region. To include other transitions, such as those
on A and G in the nearby 240-250 nm region (Arnott & Selsing 1975), at 6 = 90°, would
raise complicated problems concerning the weighting given to them in constructing the average
transition moment. However, the likely effect on the c.d. of a different 6 is examined in
Appendix 4, and we show that inclusion of other transitions would probably have little effect
where only relative c.d. values for different structures are required.)

The non-conservative and conservative contributions to the c.d. can now be evaluated by
using

+5 0 [e9)
Oamnse 3 { 3 0,08+ 3 @080
m=—4 n=—c0 n=—00
+5 [ed] <] (51)
Offmc P X { 5 0y0pram)+ 3 2y0pn).
m=—4 n=—00 n=—00
We evaluated the geometric factors £, and £, for each m-value, for a given n, by using (23),
in which the components of R and hence T are given by (38), (39) and (6), and those of P
by (34), (35) and (29). The process was repeated for all n, with the summations terminated
at n = 20 for the straight helix; for the superhelix, n values up to several hundred must be
included to encompass interactions between turns. The computed summation over geometric
factors is multiplied by the electronic structure factor /¢ in the non-conservative case, giving
O™¢ and O°¢, which are then multiplied by the shape functions f(w) and f’(w) to give the total
c.d. spectrum, from (12), as a function of wavelength.

Before applying this theory to supercoiled DNA, we tested it on straight DNA (for which
the summation over m in (51) is replaced by multiplication by the number of groups per turn)
and obtained the theoretical spectra shown in figure A 4.2 for A- and B-forms and some
intermediate structures. The shapes of the calculated A and B spectra agree well with those
of experimental spectra ( Johnson & Tinoco 1969; Ivanov et al. 1973), confirming the validity
(at least for purposes of comparing different DNA geometries) of our approximations, namely
retention of the dipole and polarizability approximations even for nearest neighbours, and use
of the ‘average base’ concept.

4. C.D. OF A SUPERHELIX WITH STANDARD B SECONDARY STRUCTURE

Although some authors have attributed the decreased c.d. spectrum of chromatin to
deviations from B-type geometry, X-ray scattering (Bram 1971; Bram & Ris 1971) and infrared
dichroism (Taillandier et al. 1979) both indicate a B-form secondary structure; furthermore,
computer energy calculations (Levitt 1978) show that a superhelix should be most stable in
the B-form with 10 b.p. per turn of the helix, in agreement with nuclease digestion studies (Noll
1974; Kornberg 1977). These calculations also show that the strain energy of smooth
supercoiling is rather small (in agreement with variable temperature studies showing that the
free energy of supercoiling is largely entropic in origin (Pulleyblank et al. 1975)) and that the
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sugar backbone of DNA has sufficient conformational flexibility to allow smooth, as opposed
to kinked, supercoiling (Levitt & Warshel 1978). Furthermore, ®P n.m.r. studies (Kallenbach
et al. 1978; Klevan et al. 1979; Shindo & McGhee 1980) favour a smooth superhelix over
the alternative kinked models (Crick & Klug 1975; Sobell ¢t al. 1976; Sobell ¢t al. 1978).

We therefore assume smooth supercoiling and standard B geometry for the initial c.d.
calculation. Estimates of the radius of the chromatin superhelix vary from 4.5 to 5.5 nm, and
recent neutron, X-ray, and electron microscopy measurements (Finch e al. 1977; Bradbury
1978) indicate a superhelix pitch of 2.7-2.8 nm. We therefore assume P = 2.75 nm and
R = 4.0 nm for the radius of the superhelix cylinder (obtained by subtracting the helix radius,
r= 1.0 nm, from the average measured external radius of 5.0 nm), corresponding to a
superhelix density

x = p(4n*R*+ P*): = pC/2nR
= —0.1337 s.h. turns/h. turn, (52)

where p = 3.38 nm is the pitch of the helix, and C the cosine of the superhelix angle a,. We
computed O"¢ and O° for a range of superhelix densities from zero to +0.1337, assuming
R=40nm, and the results are presented in figure 3 in the form of the ratio
{Ae(x)/Ae(0)} [wpyax], of the positive c.d. maxima for the superhelix and helix, where

Ae[w] = O"C e7#" — 0w e 7", (53)
The wavelength of maximum c.d. is given by
Wimax = $O"—[(0")*+4(0)*]3}/ O° (54)

(from d/dw Ae[w] = 0, with O° < 0), which corresponds to a w,, of about one standard
deviation if 0" is small compared to O°, but the maximum shifts if O™® becomes larger. In
fact, O° is typically 10-20 times larger in magnitude than O"¢, so although O"° varies greatly
with x, the variation of the total c.d. can be explained entirely by changes in the conservative

contribution.
14
g F1.2
004 008
7 1 1 1 1 1 1 1 1 1 1 1
-0.12 -0.08 -004 x
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< 08
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; =
’ = tos
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Ficure 3. The computed ratio Ae(x)/Ae(0) as a function of superhelix density x for superhelix radius R = 4 nm;
the bars indicate the range of earlier experimental results.

The computed Ae(x)/Ae(0) ratio is roughly in line with observation, showing an increase
at small negative x, followed by a reversal at large negative x (and the opposite for positive x).
However, the experimental increase at small negative x is seen to be severely underestimated,
and there is almost no reduction in c.d. at high x (Ae(x)/Ae(0) = 0.996 at x = —0.1337). An
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optimistic first interpretation might be that the wrong superhelix radius has been used.
However, although R = 3.5 nm gave a greater increase at moderate superhelix densities, and
R = 4.5 nm gave a smaller increase, neither produced the required reduction at high x.

Before considering improvements in the model to remedy these discrepancies, we examine
the physical reasons for the present result.

The chirality of a straight, non-supercoiled, helix arises from the 2[0] component of the
distance vector, R, = r sin A, which changes sign on going from a right to a left-hand helix
(whereas the components R, =7 (cosA¢p—1) and R, = Az are unchanged). Any increase
(decrease) in the magnitude of this antisymmetric component should therefore increase
(decrease) the optical activity. The relative size of R, and R, is also important; thus the straight
helix has maximum chirality, or helicity, for a helix angle o;, = 45°. Similar considerations apply
to the superhelix angle g, with the maximum difference between the optical activity of left
and right-hand superhelices occurring at medium values of x, while at very high x, corresponding
to agy, ~ 0, these differences disappear as the tight superhelix increasingly resembles an
(achiral) circle. R, also has a role; a helix must go well ‘down’ (large negative R,) as well as
to the right or left (large | R,|) and well forward (R, comparable to | R, |), otherwise it is not
a helix, but simply an (achiral) straight line that happens to be pointing to the right or left.

Calculation of the components of the distance vector R(0F — 1) between nearest neighbours
(evaluated in the proper helix frame {#[0, ¢(0%)]} of the zeroth chromophore) shows that both
R, and |R,| are increased, compared with the straight helix values, for right-hand super-
coiling, and decreased for left supercoiling, while R, is increased on the outside of
the superhelix (—in < ¢(0F) <in, m=—4, —3, —2), and decreased on the inside
(In < $(0M) < 3m,m = 1,2,3). This effect on R, is expected, because the helix is stretched
by the positive curvature of the outside, and compressed by the negative curvature of the inside,
leading to larger contributions to the optical activity from bases on the outside (see table 2, which
shows the conservative nearest-neighbour interaction £, (0% — 1) for chromophores of different
m-values, whose positions are shown in figure 4). The effects on R, and | R, | appear surprising,
since they imply that right (left) supercoiling makes the helix more (less) chiral, although it
decreases (increases) the c.d. But in the exciton model, it is not the chirality of a structure itself
that determines the optical activity, but the chirality of the relative orientation of transition
dipoles located on this structure. We should therefore examine the effect of supercoiling on the
chromophore orientation as well as on the helix itself.

Consider the proper frame of the ‘top’ of the helix cylinder (¢ = 0). This is {##[0, 0]} and
for zero superhelix density it remains unchanged all along the helix, but in the superhelix it
evolves with superhelical phase @ according to

{i"[@, 0]} = A7 M(®) h{i"[0,0]}

cos @ S sin @ Csind
= [—S sin®  S$?cos®@+C?  SC(cosd— 1)] {&"[0,0]} (55)
—Csin®  SC(cos®@—1) C?%cosP+5?

At very high superhelix density, $ & 0 and C & 1 (g, & 0), so, for small @,

1 0 +e
{fh[fb,O]}z[ 010 ]{f“[O,O]} (56)
—e 0 1
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TABLE 2. CONSERVATIVE INTERSTRAND INTERACTIONS BETWEEN AN m-TYPE CHROMOPHORE AND
ITS NEAREST NEIGHBOUR AT DIFFERENT SUPERHELIX DENSITYT

x=-005 +0.05

m Q,(0F — 1) Q, (0 — 1)

—4 —~0.01659 ~0.01403

-3 —~0.01658 —0.01405

—2 —0.01653 —0.01399

P 1 —0.01646 —0.01388
<« 0 —0.01640 —0.01376
~~ 1 —0.01636 —0.01366
— 2 —0.01637 —0.01364
< > 3 —0.01643 —0.01370
> C 4 —0.01650 ~0.01382
@ o 5 —0.01657 —0.01395

o x=—0.1337 +0.1337
O m Q,(0% > 1q) 2,08 > 1y)
E 8 —4 —0.01638 —0.01572
-3 —0.01623 —0.01562

22 —2 —0.01597 —0.01535
0§ —1 —0.01559 —~0.01488
= 0 —0.01499 —0.01414
s 1 —0.01433 —0.01334
8<¢ 2 —0.01413 —0.01306
oZ 3 ~0.01469 —0.01364
=< 4 —0.01562 —0.01469
e 5 —0.01625 —0.01546

t For the straight helix (x = 0) 2,(0p—~ 1) = —0.01520 for all m.

0
3yl

<

[
p— Ficure 4. Positions of chromophores with different m values; the m = 0 chromophore has
< > angular coordinate ¢ = §| ¢y, |-
>
O H
= (where € is a small quantity, and we note that C,® > 0 for x > 0, C, @ < 0 for x < 0, and
e o . . .
50 @) S > 0 always), showing, predictably, that the #* and k™ axes at superhelix phase @ tip slightly
O forward (with respect to those at @ = 0) as the helix cylinder bends downwards. But, more
w interestingly, at low to medium superhelix density (S = 1,C = 0) we obtain, for small @,
1 +40
{t"[®,01} = | F0 1 0 [{Z"[0,0]}, (57)
0 0 1

showing that the #* and j® axes turn slightly to the right (left) for right (left) supercoiling. In
other words, the helix cylinder not only bends downwards and points to the right (left), but

PHILOSOPHICAL
TRANSACTIONS
OF



http://rsta.royalsocietypublishing.org/

o \

p &

JA

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

a

/A
A \

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

C.D. AS A MEASURE OF SUPERHELIX DENSITY 469

also rolls over to the right (left). (Strictly, one should consider the proper helix frame {#}[®, ¢]}
of a chromophore of arbitrary phase ¢; a similar right or left turning of ¥ and j is found for
all ¢, although # and k of course tip forward on top of the cylinder, and backward underneath.)

The chiral rolling, or torsion, about the cylinder axis, explains both the increased (decreased)
R, and | R, |, and the decreased (increased) c.d., for right (left) supercoiling. The effect on the
distance vector can be appreciated from figure A 2.2, where the chiral rotation of #*[®, 0] with
respect to 1[0, 0] is clearly seen. The displacement ww’ of the centre of the helix cylinder is
AzEM in the straight helix, but in a superhelix »’ also drops downwards, making R, more
negative by R(cos A®—1). This effect, however, is dominated by the chiral torsion of the
cylinder; for x > 0, &’ @’ twists to the right, adding to the [0, 0] component, R,, of R, and
reducing the ##[0, 0] component, to give a larger negative R, ; for x < 0, 0’ Q’ twists to the left,
reducing R, and making R, less negative. Therefore the helicity of a helix is indeed increased
by positive supercoiling, and decreased by negative supercoiling.

TABLE 3. TOTAL CONSERVATIVE AND NON-CONSERVATIVE CONTRIBUTIONS AS A FUNCTION OF
SUPERHELIX DENSITY FOR STANDARD B-DNA SECONDARY STRUCTURE AND R = 4.0 nm

0°=% Q, o"® = Fre 3 Q.
n n

x (conservative) (non-conservative)
0 —0.4117 0.0288
—0.02 —0.4276 0.0304
—0.04 —0.4411 0.0302
—0.06 —0.4499 0.0266
—0.08 —0.4525 0.0198
—0.10 —0.4485 0.0127
—0.12 —0.4389 0.0142
—0.1337 —0.4145 0.0242
0 —0.4117 0.0288
0.02 —0.3959 0.0271
0.04 —0.3826 0.0272
0.06 —0.3736 0.0303
0.08 —0.3698 0.0359
0.10 —0.3707 0.0406
0.12 —0.3745 0.0354
0.1337 —0.3926 0.0240

The c.d. (from (3) and (4)) is proportional to the product of the ‘helicity factor’, g A u™ - R,
which roughly mirrors the helicity of the helix, and the interaction V between g® and u™,
which more closely reflects the mutual orientation of the dipoles than the helicity of the helix.
From (51) and (21) to (27), we see that conservative interactions are between ), along
[0, ¢,], and u™, along £[®P, #, + A¢], while non-conservative interactions can be regarded
as between #© and a vector along k/[®, ¢, + Ap]. Because 7 and k are affected differently by
supercoiling, the conservative and non-conservative optical activities show very different
x-dependences (table 3). Consider first the helicity factor. In the conservative case a® A u™
is roughly proportional to sin A¢ (we neglect any k component of g as this is small for B-DNA),
but the effective angle between the dipoles is slightly larger (smaller) than A¢ for right (left)
supercoiling as #™ twists to the right (left) with the {f"[®, 0]} frame, so the helicity factor

31 Vol. 313. A
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increases (decreases); in the non-conservative case, g A k points along j or —# according to
whether #© is radial or tangential, and since R, and | R, | increase (decrease) for right (left)
supercoiling, #® A g™ . R will also increase (decrease). Consider next the interaction V, given
by (5) and (6). In the conservative case the dominant term is @ - g™ (roughly proportional
to cos Ag), and this decreases (increases) for right (left) supercoiling as #™ twists away from
(back towards) u®; this is reinforced by the |R|™® dependence of V (because increased
(decreased) R, and R, means increased (decreased) | R| for right (left) supercoiling). The result
is that because the transition dipoles are brought closer together and into a more parallel
arrangement by left supercoiling, they interact to a greater extent, leading to a stronger
conservative c.d. despite the decreased helicity factor; and for right supercoiling, the dipoles
move apart and interact less, giving a weaker conservative c.d. despite the increased helicity
of the helix itself. In the non-conservative case the dominant term in V is —3(ﬂ(0)‘é) (Ii’l::)
and, whether u(® is radial or tangential, #®-R will increase (decrease) for right (left)
supercoiling because of the increased (decreased) R, and | R, |; (Ii : 12) shows little dependence
on superhelix handedness, but becomes larger as | x| increases (éh[dz 0] points increasingly
downward, towards R) and so amplifies any chiral effect on (u(® Ii) The non-conservative
interaction and helicity factor are thus affected in the same direction by supercoiling, giving
a much stronger x¥-dependence than in the conservative case (where the two factors are opposed,
the interaction dominating). However, the |R|™® dependence acts in opposition, and just
dominates at very low |x| to give a slight decrease (increase) before, at higher superhelix
densities, the increased tipping of k amplifies the chiral effect on the interaction and helicity
factor to give a strongly increased (decreased) non-conservative contribution for right (left)
supercoiling.

Because the helicity of a structure and the chirality of the mutual orientation of dipoles on
the structure may be affected oppositely by supercoiling, it is natural to ask whether the
x-dependence of the c.d. shown in figure 3 is general, or a special feature of the particular dipolar
orientation in B-DNA, and also how sensitive the x-dependence is to slight changes in secondary
structure. In Appendix 4 we show Ae(x) /Ae(0) as a function of x for various secondary structures
(some planar (# = 0) structures with dipoles more radial (A-like) than in B-DNA, and some
B-like structures with differing out-of-plane tipping, £). The different dipolar orientations
produce x-dependences that simply follow a more conservative pattern (increased c.d. for left
supercoiling, decreased for right), or a more non-conservative pattern (for left supercoiling a
slight increase at low x, followed by a reversal and strong decrease, and for right supercoiling
a slight decrease followed by a sharp increase) according to whether the c.d. of the straight
helix is conservative or non-conservative at that orientation. The calculated x-dependence in
figure 3 is thus unique to B-DNA only in the sense that B geometry is very unusual (as described
in Appendix 4) in giving a largely conservative spectrum and hence the conservative pattern
of x-dependence.

Chiral interactions in supercoiled DNA can be classified as short range (within one turn of
the helix), medium range (between turns of the helix) and long range (between turns of the
superhelix). One might expect to relate the c.d. from short range interactions to changes in
the local helix angle &]°¢, arising from curvature of the surface of the helix cylinder as it is coiled
into a superhelix. However, x appears squared in the expression for tan aj°¢ (Appendix 3), so
the local curvature is the same for either handedness. This is because the metric of the cylinder
surface is identical for left and right-hand superhelices, and the difference between them lies
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in the way the two-dimensional surface is embedded into three-dimensional space, as reflected
in the distance vector R and in the chiral torsion of the helix frame. But a}°¢ does affect the
c.d., albeit achirally. Table 2 shows that the nearest-neighbour contribution from chromophores
on the inside of the superhelix is decreased because of reduction of the local helix angle
(Appendix 3) as the helix is compressed, while chromophores on the outside, where the helix
is stretched to give an increased a}°¢, show increased optical activity. But because the metric
is achiral, these local curvature effects produce little difference in overall c.d. between left and
right hand superhelices at x = +0.1337; both show a slightly decreased c.d. compared to the
straight helix because the curvature is strongest on the inside, so the decreased contribution
from inside chromophores dominates the increased contribution from outside chromophores.
However, at x = +0.05, these achiral local curvature effects are swamped by the ‘global’
curvature effects of the chiral embedding of the two-dimensional curved cylinder surface into
three-dimensional Euclidean space, as reflected in the distance vector (which increases the
helicity of the helix for right supercoiling, and decreases it for left supercoiling), and in the chiral
torsion of the cylinder (which brings the dipoles closer together, for left supercoiling, to give
a larger conservative c.d., despite the reduced helicity of the helix itself, for all m-values at
x = —0.05, table 2).

In medium range interactions, excitons jump between turns of the helix, so the helicity of
the helix itself is irrelevant. Although, for small @, R, increases (decreases) for right (left)
supercoiling, because of the term r cos (¢, +A¢) SsinAD in (A 2.7), at larger @ the term
— AzSC becomes more important (as the helix cylinder turns left (right) on moving forward
along, as well as merely around, the superhelix cylinder) and R, starts to decrease (increase),
so that the helicity of the path of exciton jump is decreased (increased) for right (left)
supercoiling. The c.d. from medium range interactions, although small, thus reinforces the
decrease (increase) for right (left) supercoiling from short range interactions.

-02r~ (a) n
50 100 150 200
helix
L" : superhelix '. lf '| |' l—f
o -04 | : 2 turn : | urn
& | : '. :
L1 —02—  (8) '
superhelix
N
d v 1 helix} ) }
3 1 3 2 3 turns
-04L

Ficure 5. The conservative intrastrand contribution as a function of the number of contributing chromophores
(n) for (a) x =—0.04, (b) x = —0.1337 (chromatin), with superhelix radius R = 4 nm.

Turning now to long range interactions, we see that the c.d. from nearest-neighbour
interactions (n = 1) is in fact a good indicator of the final result (figure 3, obtained by summing
over interactions to n = + 1000), which must therefore reflect mainly local effects, i.e. chiral
embedding at low | x|, and achiral curvature effects at high | x|. So why is the c.d. not affected
by longer range interactions between adjacent superhelical turns? Analysis of running totals

31-2
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for summation over n chromophores shows that such interactions are quite strong, but the effect
ofinteraction with the second half-turnis cancelled by that of interaction with the third half-turn.
Figure 5a shows oscillations, corresponding to each helical turn, which at x = —0.04 converge
rapidly to a value larger in magnitude than that of the straight helix; for x = —0.1377
(figure 54), there are in addition oscillations corresponding to each turn of the superhelix, which
die out after about three such turns, giving a total very close to the straight helix value. Thus, if
the summation is terminated at n = 70, one does indeed obtain a c.d. spectrum that is strongly
depressed owing to interaction with the adjacent superhelical turn, as predicted by Fasman
& Cowman (1978); butif the summation is continued to n = 1000, this effect is cancelled, giving
a spectrum virtually identical with that of the straight helix. The physical reason for this
cancellation is illustrated in figure 6, which shows the general direction of exciton jump between
turns. We see that interactions with groups between % and 1 superhelical turn away have left
helicity, which reduces the c.d. of the right-handed DNA helix; interactions with groups 1-1%
turns away have right helicity, which increases the c.d., cancelling the earlier decrease.

Bfen
"o

B

\

Ficure 6. The cancellation of tertiary interaction contributions to the c.d.

We have thus shown that although Fasman & Cowman were correct in predicting tertiary
interactions between turns, these have no net effect on the c.d. spectrum. We have also shown
that although curvature strongly affects the c.d. of individual chromophores by increasing that
of those on the positively curved outside, and decreasing that of those on the negatively, and
more strongly, curved inside, the net effect of differential curvature of the inside and outside
is to produce only a marginal reduction in the chromatin c.d., to 99.6 %, of the straight helix
value. We therefore conclude that secondary structural changes, perhaps involving the often
suggested base-tilting, must be responsible for the reduction in the chromatin Ae(x) /Ae(0) ratio
to 0.7.

But even when the geometry of each base is locally standard B-form, the global curvature
of the helix cylinder produces a mutual tipping of the base-normals of neighbouring bases, so
why does this not affect the c.d. spectrum? We show in Appendix 4 that base-tipping may be
resolved into twisting (rotation about the line d,,, joining paired bases) and tilting (rotation
about an axis perpendicular to d,, and to the helix axis); twisting changes the orientation of
the transition moment much more than tilting, and so has more effect on the c.d. spectrum.
Now the mutual tipping of neighbouring bases built into a superhelix corresponds to a rotation
about a diameter of the helix cylinder at phase ¢ = }m; for most base-pairs (except those with
phase i, for which any effect is minimal because the cylinder is almost Euclidean at this point),
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this rotation has more of the character of mutual tilting than of twisting, and so this global
base-tipping has little effect on the c.d. Some alteration in local base geometry is therefore
needed to produce the required reduction in chromatin c.d. This might take the form of a
curvature-induced distortion that could amplify the differential curvature effects already seen
to produce a very slight c.d. reduction even with standard B geometry.

5. INTRODUCTION OF CURVATURE-INDUCED BASE-TWISTING

Because non-c.d. evidence points to chromatin being B-form, we seek a secondary structural
modification to ‘standard’ B-DNA that is sufficiently subtle to alter the c.d. while keeping the
structure within the B family. A modification of precisely this kind is suggested by the results
in Appendix 4 for the variation of the B spectrum with base-tipping (i.e. Euler angle 8). From
figure A 4.2 we see that strong forward tipping (e.g. # = +6°, compared with # = —6.26° for
standard B-DNA) depresses the c.d. maximum to give spectra remarkably like those observed
for chromatin. This is confirmed by Levitt’s (1978) computer energy calculations, which show
not only that the chromatin superhelix is most stable with 10 b.p. per turn, i.e. an essentially
B structure, but furthermore that minimum energy is attained if the base-normals acquire an
increased tip relative to the helix axis. Levitt shows that this results in a greatly increased twist
angle, 7, which is especially pronounced on the inside of the helix, enabling the bases to twist
away from one another, thus avoiding any unfavourable interactions from being forced together
by negative curvature while at the same time finding more favourable stacking configurations.

We therefore consider a model of supercoiled DNA in which the basic local geometry (i.e.
the values of «, y, ¢y, £, 7, etc.) is that of the standard B-DNA of Arnott e al. (1969), the
only changed parameter being the tip angle §. A crucial feature of this model is that for B
geometry, the tip angle £ is almost entirely twist, to which the c.d. is highly sensitive, rather
than tilt, to which the c.d. is very much less sensitive (see Appendix 4). We model the variation
of £ with superhelix density by an expression of the form

Bon = P+ (x/xXmax)™ B x[$(0™)], (58)
where the tip angle £ in a superhelix is set equal to that in a standard B-form straight helix
(Bn = —6.26°), plus an additional term which is proportional to the nth power of the superhelix

density, rises to a maximum of #” at x = x,,, (where x,,,. = p/2nR is the superhelix density
of a maximally curved superhelix, i.e. a circle), and is weighted by a phase factor y[#(0™)],
allowing bases with different m-values to tip by differing amounts. In the absence of
experimental measurements of £ in chromatin, we note that Levitt’s computations suggest an
average mutual twist of 27 & 30° between base-normals of paired bases in a superhelix,
corresponding to | #| & 15°, because f = 7 for B geometry. (This large twist need not weaken
the hydrogen bond, which can in any case tolerate deviations of up to 12° from linearity
(Pauling 1960), because Levitt suggests that small out-of-plane movements of the carbonyl and
amino groups in fact compensate for much of the twisting strain on the hydrogen bonds, while
leaving the aromatic rings still strongly mutually twisted). Levitt does not give the direction
of the base-normal tipping, but figure A 4.2 clearly shows that a large positive B depresses the
c.d., while a large negative S elevates it. We may therefore guess that the maximum additional
tipping, £, is about + 15°, but acknowledge that 4’ is really an empirical parameter that could
be estimated by comparison of our computed results with experimental spectra (although its
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accurate determination must await improved X-ray resolution). Because the additional
base-normal tipping is regarded as a curvature-induced distortion, the phase factor y[¢(0™)]
should mirror the phase of the Riemann curvature scalar,

Reurv(g) = (C?*/rR) cos ¢ [1+2(r/R) C* cos p] 7, (59)
of the curved helix cylinder (Appendix 3). We therefore write

Bsn = o= (%/%max)" B cos $(0™) [1+2(r/R) C* cos $(0™)] 7, (60)

where the negative sign ensures that groups on the positively curved outside (| $(0™)| < im)
tip backwards (towards increasingly negative £ and larger c.d.), while those on the negatively
curved inside (in < [¢(0™)| < 7) tip towards increasingly positive # and smaller c.d., the
deformation being greatest on the inside (cos ¢(0™) < 0) where the curvature is strongest, so
that an overall reduction in c.d. can be expected. (It is fairly plausible that inside and outside
bases might twist in opposite directions, because the inside ones must twist to avoid
unfavourable interactions as they are forced together, while the outside ones must twist to
recover favourable stacking interactions reduced by increased separation.) This model, in which
local deformation in secondary structure is directly proportional to the curvature at a given
point, provides the required amplification of the differential curvature effect seen in the
standard B-form superhelix, where positive and negative curvature were found respectively to
increase and decrease the c.d.

One might imagine that a sensible value of # to try would be 2. However, if curvature-induced
base-twisting arises from nearest-neighbour steric effects, a higher value of n» may be
appropriate, because the curvature may not become felt, over such short range, until higher
values of x are reached. We therefore use n = 6 in (60), but recognize that, like #’, n needs
to be confirmed by comparison with experiment.
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Ficure 7. Computed Ae(x)/Ae(0) ratio as a function of superhelix density x using tip angle S, (¢) from (60),
with #/ =15°, =6 and R = 4 nm.

Figure 7 shows the computed Ae(x)/Ae(0) ratio as a function of x for an otherwise B-form
superhelix having a modified tip angle given by (60) with #” = 15° and n = 6. At low superhelix
densities, the Ae(x)/Ae(0) ratio remains as it was in figure 3 without curvature-induced
base-tipping, but for chromatin it is reduced to about 0.7 in excellent agreement with most
experiments. This seems to confirm the value §” = + 15° suggested by Levitt’s work, but clearly
the c.d. measurements on chromatin need to be repeated (in view of the wide range of
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Ae(x)/Ae(0), from 0.45 to 0.70, of results hitherto obtained) to find the best value of this
parameter. The chromatin c.d. is much less sensitive to n (as x/x,, = 1) than to £, but at
more moderate superhelix densities (at which there is at present a total lack of experimental
data) the x-dependence of the c.d. is quite sensitive to n, as shown in figure 8. New c.d.
measurements over the whole range of ¥ could test these predictions and determine the most

1.3

L1+

Ae(x)/Ae(0)

09

0.7-

Ficure 8. Computed dependence of Ae(x)/Ae(0) on superhelix density x using the tip angle g, (@) from (60)
with ' =15°, R=4nm, and () n=2, (b) n=4, (c) n=6.

appropriate values of n and f’. Despite the success of our base-tipping model in accounting
for the reduced c.d. of chromatin, the exciton model, with or without extra base-tipping, fails
to reproduce the observed 259, increase in c.d. at x = —0.044, predicting an increase of only
about 8 %,. This may indeed prove to be a deficiency of the model, but we feel judgement should
be reserved until the c.d. measurements have been repeated over the full range of superhelix
density.

6. EXTENSION TO THE SUPERSUPERHELIX

Although secondary effects, in the form of increasing base-tipping with increasing curvature,
can account well for the depressed c.d. of chromatin, quaternary effects should be considered
as a possible alternative explanation, because there is established experimental evidence for
supersupercoiling in chromatin, but only a theoretical indication of increased base-tipping. The
major modifications required to encompass another order of coiling are in the transformation
matrix W of (34), and in the distance vector, these being dealt with in Appendixes 1 and 2
respectively. We introduce an additional angular coordinate, the rotation @’ round the
supersuperhelix cylinder, which is related to the rotation round the superhelix cylinder by

AD" = XAD, (61)
where X = P(4nR?+ P’?)7#{s.s.h. turns/s.h. turn} (62)

is the supersuperhelix density. Neutron scattering (Bradbury 1978) indicates a supersuperhelix
pitch P & 10.5 nm, and an outer radius of 13.7 nm, corresponding (with R = 4.5 nm and
r = 1.0 nm) to a radius R’ = 8.25 nm for the supersuperhelix cylinder, giving | X| = 0.052.
Just as a chromophore’s phase ¢(0™) round the helix becomes significant when supercoiling
breaks the cylindrical symmetry of the helix, so the phase @(0™) round the superhelix must
be considered when supersupercoiling is present. Chromatin (x = —0.1337) has 75 base-pairs
per turn of the superhelix, i.e. 75 non-equivalent chromophore sites, distinguished by the index
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M; we take the M = 0 group to be at @ = 0 (‘on top’ of the superhelix), so the AMth group
has superhelical phase

D(0M) = Mx2m/k. (63)
One should really compute the contribution to the c.d. of chromophores in each of the 75
different sites, and then take the average. Our purpose at this stage, however, is not to present
a calculation of high accuracy, but simply to discover whether or not supersupercoiling can
affect the c.d. spectrum. We therefore investigate the c.d. of only five sample types of
chromophore (those at @(0M) = 0, in,in, 4, T, corresponding to M = 0, 10, 19, 28, 37) and
average the results by using

Q[average] = HQ[0] 4+ 2Q2[in] +2Q2[3n] + 2Q[3rn] + Q2[r]}, (64)

where Q[in], for example, represents the contribution from a chromophore in the |®| =1in
region, and is multiplied by two because there are two such regions. This gives a rather crude
average, but should indicate the general order of magnitude of quaternary effects on DNA c.d.
Now | X| = 0.052 corresponds to 1442 chromophores, or about 19 turns of the superhelix, per
turn of the supersuperhelix, so our computations sum to n = + 2000, to encompass interactions
with groups in the first adjacent turn of the supersuperhelix.

Because the handedness of the supersuperhelix is uncertain (Thoma et al. 1979), one of the
purposes of our rough calculation is to see if c.d. can resolve the matter. Our computations
(MacDermott 1981) for chromatin (¥ = —0.1337) indicate a much greater depression in c.d.
in the left-handed case (Ae(x)/Ae(0) ~ 0.64 for X = —0.052) than in the right-handed case
(Ae(x)/Ae(0) =~ 0.90 for X = +0.052). The physical reasons for this can be analysed by plotting
the running total of contributions from conservative intrastrand interactions (which are the
predominantinfluence on the total c.d.) as a function of the number of interacting chromophores
n, and in figure 9 this sum is plotted separately for chromophores at @ = 0, in, 7 in left and
right-handed supersuperhelices.

Looking first at the very beginning of the curves, we see that even when the sum is terminated
atlow n (n & 20), before tertiary or quaternary interactions come into play, the supersuperhelix
c.d. is already lower in magnitude than that of the superhelix. This can be explained
by the greater curvature of the supersuperhelix. We recall that for a left-handed superhelix
at high x, differential curvature effects tend to reverse the increase in c.d. observed at
lower x; the stronger curvature of the supersuperhelix amplifies this effect, producing
a more substantial reduction in c.d. For left-handed supersupercoiling, we have,
at low n, QL[0] < Q[in] < Q¥[n], while for right-handed supersupercoiling we have
QR[0] > QB[in] > Q¥[rn]. These opposite orderings represent a small chiral effect from the
small non-zero value of ag,, superimposed on the large achiral reduction in c.d. magnitude
caused by the extra-strong curvature at small oy, and o, (both x and X are close to their
maximum possible values, corresponding to circles). We saw earlier that left (right) handed
supercoiling increases (decreases) the c.d. arising from local interactions, because chiral torsion
brings the dipoles closer together (takes them further apart), and it can be seen that
supersupercoiling increases this torsion. The effects of left- and right-handed supersupercoiling
are therefore respectively to lessen or enhance the general decrease in c.d. from the strong
curvature; these effects will of course be greatest on the inside of the superhelix, where the
curvature is greatest, so Q®[1] is therefore the most reduced, and Q%[n] the least reduced at
n = 20.
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Ficure 9. Computed running sum of conservative intra-strand interactions in supersuperhelix, for chromophores
at superhelix phases @ = 0, ir, n, at supersuperhelix density (a) X = —0.052, (6) X = +0.052.

Turning now to higher 7, a peak is seen at n = 50-100 arising from tertiary interactions with
the first adjacent superhelical turn. This peak is sharpest for Q[n] because adjacent turns are
forced very close together on the inside of the superhelix. In the supersuperhelix, as in the
superhelix, interaction with the second half-turn of the superhelix (1 < @ < 2x), is cancelled
by that with the third half-turn (2r < @ < 3m), so that tertiary interactions have no net effect
on the c.d.

At still higher n, a series of similar peaks of diminishing size is seen, corresponding to
interaction with more distant turns of the superhelix. But these oscillations are merely
superimposed on a much larger one arising from the first turn of the supersuperhelix; for a
left-handed supersuperhelix, interactions with the first half-turn (0 < @ < 1) have left helicity,
so decreasing the magnitude of the c.d., while those with the second half-turn (1 < @ < 2m)
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have right helicity, thus tending to increase the c.d. again; but because the second half-turn
of a supersuperhelix is very much farther away than the first, cancellation is incomplete, so
that at @" = 21 (or n & 1450), a net decrease over the value at much lower n has occurred;
and exactly the opposite effect occurs for a right-handed supersuperhelix, producing a net
increase. These quaternary oscillations are of much larger amplitude than the tertiary
oscillations, because quaternary folding brings so many more chromophores close enough to
interact significantly. The amplitude is especially large for [n], as groups on the inside
experience the maximum curvature and have the largest number of close neighbours, but is
less pronounced for 2[0], as the outside is less curved and fewer groups are within interactive
range. The peak is almost absent for @(0M) = 1n, where there is no quaternary curvature, but
there is a sudden change at @” = 2xn, where adjacent turns come extremely close together.

It is interesting to note that although left-handed supercoiling and supersupercoiling both
have an elevating effect on the c.d. from local interactions within about one turn of the helix,
they have opposite effects on the c.d. from longer range interactions. Thus, for a straight (X = 0)
left-handed superhelix, the running total c.d. reaches a minimum at @ = 2n. In contrast,
left-handed supersupercoiling leads to a minimum at @ = 7, since exciton jump to groups with
@’ < 1 has left helicity, and a maximum at @" = 2n. This is because ag, and ag, are both
small, so the helix axis is almost perpendicular to the superhelix axis in chromatin and the
supersuperhelix axis is almost perpendicular to this, i.e. almost coincident with the helix axis.
Helicity is of opposite sign when referred to perpendicular axes, so left-handed superhelicity
and supersuperhelicity are equivalent respectively to right and left helicity about the helix axis,
thus explaining the respective increase and decrease in c.d. from groups at @ < wand @’ < m.

An apparently puzzling feature of the curves in figure 9 is that the tertiary peaks in the
supersuperhelix (| X| # 0) curve are of opposite sign to those in the plain superhelix (X = 0,
figure 54), despite x being negative in both cases. This is resolved by returning to figure 6, where
tertiary interactions with groups at m < @ < 21 were depicted as having left helicity (about
the helix axis) for the plain superhelix; when the superhelix cylinder is itself bent (| X| # 0),
these interactions acquire in addition a right helicity that apparently dominates at high | X,
producing the inversion of tertiary peaks seen in figure 9.

In summary, our computation has shown that left-handed supersupercoiling reduces the c.d.
much more than does right-handed supersupercoiling, the main reason being their large and
opposite effects on the interactions 2Q[n] between groups on the highly curved and very
crowded inside of the superhelix. Although we have clearly terminated the summation too soon
(figure 9 shows that the c.d. is still changing at n = 2000), this quaternary effect is undoubtedly
real unlike the tertiary effects, which give a depressed c.d. on summation to n = 70 but have
cancelled by the time the series converges. The crucial difference between the superhelix and
supersuperhelix is that in the latter the quaternary turns are so large that cancellation is
incomplete (because the cancelling groups are so much further away than in the superhelix),
thus leaving a non-zero effect. At n = 2000 the £2[r] curves are about to embark on another
oscillation, but the increasing distance will prevent them swinging all the way back, so the final
result at n = 00 should be a still greater difference between the c.d. of left and right-handed
supersuperhelices.

We thus conclude that if the supersuperhelix is left-handed (Ae(x)/Ae(0) & 0.64), quaternary
effects alone could account for the observed chromatin Ae(x)/Ae(0) ratio of 0.45-0.70, without
invoking secondary effects. However, if it is right-handed (Ae(x)/Ae(0) =~ 0.90), then secondary
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effects must be present. But although either curvature-induced base-tipping (giving
Ae(x)/Ae(0) = 0.71) or left-handed supersupercoiling (Ae(x)/Ae(0) = 0.64) could separately
account for the most frequently observed ratio of 0.70 (figures 10a, &), the fact that much lower
values have been observed, and that the reduction in c.d. varies systematically during the cell
cycle (Nicolini et al. 1975), strongly suggests that both effects are contributing. We therefore
computed the c.d. of a superhelix with both base-tipping (described by (60) with » = 6 and
p = 15° as before) and left-handed supersupercoiling (X = —0.052), and obtained a
Ae(x)/Ae(0) ratio of about 0.48 (figure 10¢) in striking agreement with the lowest experimental
chromatin ratios. Because such a large additional reduction cannot be obtained with
right-handed supersupercoiling, our results suggest that the supersuperhelix is more likely to
be left-handed. This seems reasonable biologically. Right-handed supersupercoiling would
destablize the left-handed superhelix, because removal of positive supersuperturns, with
concomitant removal of negative superturns, would clearly be energetically favoured ; negative
supersuperturns, however, would help keep the negative superturns locked in for future use in
facilitating transcription.

It is therefore likely that the most frequently observed experimental Ae(x)/Ae(0) ratio, 0.70,
represents chromatin that is supercoiled, but not supersupercoiled, the depression in c.d. arising

cd.
(a)

260 nm

Ficure 10. Computed superhelix c.d. curves (thick line) with (a) base-tipping only, giving Ae(x)/Ae(0) = 0.71, (b)
left handed supersupercoiling only, giving Ae(x)/Ae(0) = 0.64, (¢) base-tipping and supersupercoiling, giving
Ae(x) /Ae(0) = 0.48; the spectrum of straight B-DNA (thin line) is shown for comparison.
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from curvature-induced base-twisting, while larger depressions probably indicate left-handed
supersupercoiling. Note that the computed spectra in figure 10 all show a strong depression
in the positive lobe at 280 nm, but much less change in the negative lobe when compared with
straight B-DNA. This is in agreement with the experimental spectra, and our computations
show that although changes in the positive lobe can be explained largely by trends in the
conservative contribution, it is actually the small non-conservative contribution that accounts
for the lack of change in the negative lobe. The magnitude of the (negative) non-conservative
contribution is increased relative to that of straight DNA, thus cancelling the effect of the
decreased conservative contribution on the negative lobe but enhancing its effect on the positive
lobe.

More accurate computations could sharpen our conclusion about the supersuperhelix
handedness, and also enable c.d. to be studied as a function of X and R’. Improvements would
not only involve summing to higher 7, and averaging over more chromophores with different
@(0M): instead of using the Riemann curvature of a supercoiled helix in (60) for the tip angle,
one should really derive the metric and Riemann curvature of a supersupercoiled helix cylinder,
because the greater curvature on the inside of the superhelix might produce a greater degree
of base-tipping.

7. CONCLUSIONS

The aim of this study was first, to resolve the ‘secondary against tertiary’ controversy
surrounding the chromatin c.d., and, second, to establish c.d. as a useful quantitative measure
of superhelix density. We have shown that contributions to the c.d. from tertiary interaction
between adjacent turns of the superhelix cancel out and so cannot, as frequently and plausibly
supposed (Fasman & Cowman 1978), account for the depressed c.d. of chromatin which must
therefore be attributable to a change in secondary structure. This somewhat unexpected finding
complicates the second objective; in the absence of conclusive experimental evidence, one has
to guess the nature of the secondary structural distortion and the form of its dependence on
superhelix density. Available experimental evidence (Bram 19771 ; Bram & Ris 1971; Noll 1974;
Kornberg 1977; Taillandier et al. 19779) constrains the distorted structure to within the B family,
and Levitt’s (1978) energy calculations suggest an increased base-normal tipping that is
especially pronounced on the inside of the bent helix. We take these considerations into account
by proposing a secondary structure differing from standard B-form only in the base-normal
tip angle, which is increased in proportion to the nth power of the superhelix density and the
phase of the Riemann curvature scalar of the supercoiled helix cylinder; in a B structure, such
tipping produces out-of-plane base-twisting (as opposed to tilting), which may relieve
curvature-induced strain and crowding. The model contains two parameters, the amplitude
f’ of the additional tipping, and the power 7 of the superhelix density to which the distortion
is proportional. We obtained excellent agreement with experimental chromatin c.d. spectra
using the value #” = 15° implied by Levitt’s results, which produces a reduction in the calculated
positive c.d. at 280 nm to about 709, of that of non-supercoiled B-DNA. A plausible value
for nis n = 6, but this cannot be confirmed until c.d. spectra over a wider range of superhelix
densities are available; it would also be desirable to re-examine experimentally the increase
in c.d. at low superhelix density, which our model appears to underestimate. Experiments are
planned that will test our model of secondary distortion, and determine the best values of n
and £’, by measuring the c.d. of DNA over the full range of superhelix density.
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Because our model gives such good agreement with experiment for chromatin, and the
parameters £ and n can be checked experimentally, we believe that it represents a substantial
first step towards making superhelix c.d. more quantitatively useful in DNA research. The
predicted sharp variation in c.d. at high superhelix densities could become a useful indicator
of the slight differences in supercoiling to which gene function is believed to be sensitive.
Furthermore, the c.d. is a good indicator of the handedness of the superhelix (except at very
high superhelix densities) and also of the supersuperhelix (which our calculations predict to be
left-handed in chromatin). The encouraging results from our preliminary calculation on the
latter suggest that more accurate computations of c.d. as a function of supersuperhelix density
could be useful, and experimental confirmation might be possible by preparing nucleoids with
and without the histone H1 that holds the supersuperhelix together.

The success of curvature-induced secondary distortion in accounting for the c.d. of the
chromatin superhelix is further evidence in favour of smooth supercoiling and against the kinked
models. Because kinking does not introduce curvature, no secondary distortion is necessary in
such models, except at the kinks, and it seems unlikely that the few bases involved in kinking
could substantially alter the c.d.

Our metric approach introduces a novel interpretation of molecular properties in terms of
spatial curvature; this could find application elsewhere.

The author thanks Dr P. W. Atkins for useful discussions.

APPENDIX 1. COORDINATE FRAMES FOR THE HELIX, SUPERHELIX,
AND SUPERSUPERHELIX

(a) The helix

It is convenient to regard a helix as inscribed on the surface of a cylinder, and we define
a triad of unit vectors, [@], M[#], K2[$], written {f[¢]}, that are radial, tangential, and
longitudinal respectively to the helix cylinder at an angle ¢ round the helix, as shown in figure
A1.1. ¢ is measured clockwise, so the helix axes {f![0]} at zero rotation are taken into those
at ¢ by the transformation

{1} = M(¢) {i"[0]}, (A L.1)

where M(¢) is the rotation matrix

cos ¢ singg 0
] (A1.2)

M(¢)=[—sin¢ cos¢p O
0 0 1

and {f"[0]} is treated as a column vector. Chromophores are not in general aligned with the
helix axes, so we define a local frame, {#°¢[¢$]}, which is the ‘proper’ frame of a chromophore
at phase ¢, i.e. the frame in which its polarizability tensor is diagonal. This frame is related
to the helix frame by

{?"[¢]} = L{i'"°[¢]}, (A 1.3)
where

L =M. (o) M, (5) M. (y), (A1.4)
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Ficure A 1.1. The helix axes.

a, 8, v are the Euler angles, and

cos o sinoe 0 cosf 0 —sinf
M, (o) = [—sinzx cosa O] , M, (B)= [ 0o 1 0 ] (A 1.5)
0 0 1 sinf 0 cosf

(The helix axes are taken into the local axes by a rotation through a about the z-axis, then
through £ about the new y-axis, and finally through y about the new z-axis.)

In DNA, the local axes are oriented as shown in figure A 1.2. Because the polarizability tensor
has approximately cylindrical symmetry (o,, = a,,) for the flat aromatic bases, the

’l\h
T jloc
,Joyr

Ficure A 1.2. The orientation of the local axes.
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transformation (A 1.3) is unnecessary if # = 0, as L is then a simple rotation about K¢ leaving
the cylindrical polarizability unchanged; in fact £ does have a small non-zero value, so the
transformation is necessary in B-DNA. However, even for zero £, a transformation is required
for the conservative contributions, for which the cylindrical symmetry is broken (B¢ has only
one component, BS,), and in fact the ‘proper’ frame (in which BC is diagonal) is the transition
frame {7}, where i tis the direction of the transition moment, defined (figure A 1.3) by itsin-plane
orientation @ with respect to the local axes:

(floc} = {74}, t= M(6). (A 1.6)

Tloc
J

Ficure A 1.3. The orientation of the transition frame in purine bases (left), and pyrimidine bases (right; arrow
indicates position of point transition dipole, M).

The transformation tat™! of course leaves the cylindrical polarizability tensor unchanged, so
we can regard {£[¢(n)]} as the proper frame of B in both non-conservative and conservative
cases. We evaluate the optical activity in the transition frame {#{,[0]} of the zeroth chromophore
of the T-helix, and therefore require a matrix P(Op<n) to take the proper frame of the nth
group into that of the zeroth group,

{Th[0]} = P(Op<n) {Z*[¢(n)]} (A 1.7)

and this matrix is used to transform {B}}, (which is just B, because {#![¢ ()]} is the proper frame)
to its new form {B}f,T in the new frame {#4[0]}:

{B}f,T = P(0p<n){B}t, P71 (0p<n). (A 1.8)

For interaction with a group ny on the same strand of the double helix, the matrix has the
form

P(Oy<ny) = AM Y (AG(0p>ny)) 4, (A 1.9)

where {iP[p)} = A{i'[4]}, A =Lt (A 1.10)
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Because the T- and V-helices are identical, this equation applies to both, but as they are
anti-parallel, their helix frames are oppositely directed;

1 0 0
{Th[8]} = SV o]}, SV = {0 -1 0], (A L.11)
0 0 —1
so, for inter-strand interactions, (A 1.9) becomes
P(0p<ny) = ATM (AP0 —>ny)) SVA. (A1.12)
Equations (A 1.9) and (A 1.12) can be combined to give
P(0p<n) = A7IM1(A¢) SA, (A 1.13)
where
ST 1 0 0
e [0 +1 O]. (A 1.14)
A\ 0 0 +1

(b) The superhelix

For a supercoiled helix, we define a superhelix cylinder on the surface of which the axis of
the small helix (called the z direction) itself forms a helix (figure A 1.4). The superhelix axes
{I[®]} are radial, tangential, and longitudinal to the superhelix cylinder at an angle @ round
the superhelix axis. @ is the angle subtended by the centre w of the helix cylinder at the centre
Q of the circular cross section of the superhelix cylinder at that point. The helix axes at a point
P(®, ¢) on the helix are now written {f*[®, ¢]}, and P subtends an angle ¢ at w (the centre
of the circular cross-section of the helix cylinder), which subtends an angle @ at Q.

The superhelix axes at different superhelical phases are related by

i)y = M(@) (f[0]) (A L.15)
(with M(®) defined in (A 1.2)) and the helix and superhelix axes by
{I[®]} = i [®,0]} (A 1.16)
or (H®)) = hM($) ([@, 1), (A L.17)
where
1 0 0
h = [0 N C] , C=cosay,, §=sinay. (A 1.18)
0o —-Cc §

Note that A can only be applied to a triad {f*[®, 0]} with zero helical phase ¢ (¢ being measured
from the ‘top’ of the helix cylinder, i.e. the point farthest from the centre of the superhelix
cylinder), so a non-zero helical phase must first be removed with M~(¢), as in (A 1.17).

Although M(®) and h are defined above for a right-handed superhelix, left-handed
supercoiling is automatically accommodated because both

@ = AzC/R (A 1.19)
and C = cosag, = 2nRx/p (A 1.20)
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170),710,0]

Klo)
’
k[®,0]
ANA ol
e N
Ji0.0)

Ficure A 1.4. Definition of the superhelix axes; the superhelix and helix cylinders seen () in three dimensions,
(b) in plan, looking down I[0].
change sign for x < 0, and we define

S =sinag, = (1—C?), (A 1.21)
taking the positive root.
In the superhelix, therefore, the transformation matrix of (A 1.13) becomes

PO <-n) = A'W1(0R >n) SA (A 1.22)

where M(Ag), which takes {#[0]} into {#[¢(n)]} in the straight helix, has been replaced by

W(OF —n) = M(¢,+ Ap) h"*M(D) hM(¢,), (A 1.23)

which takes {#[0, ¢,]} into {#}[D, ¢, + Ad]} (¢, is the phase of the 02 group, given by (20)).
(¢) The supersuperhelix

The supersuperhelix frame {F[®’]} has axes radial, tangential and longitudinal to the
supersuperhelix cylinder at phase @’. It is related to the superhelix frame at supersuperhelical
phase @ and superhelical phase zero by

{I[e']y = HU[#', 0], (A 1.24)

32 Vol. 313. A
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where
1 0 0 ¢’ = cosagyy
H= [O A C’] (A 1.25)
0 —C 81 § =sinag,

and ag,, is the supersuperhelix angle. A non-zero superhelical phase must be removed before
applying H: - .
{I'®'} = HM (D) {I[®’, D]}. (A 1.26)
In the supersuperhelix, therefore, the matrix

WM >n) = M(¢p,+Ad) A 'M(P,+AD) H*M(P') HM(D,) *hM(p,)", (A 1.27)

in the analogue of (A 1.22), takes {#}[0, D,, $,]} into {#}[D’, D, +AD, ¢, +Ap]}. (D, is the
superhelix phase of the 0#™ group, given by (63).)

APPENDIX 2. THE DISTANCE VECTOR
(a) The helix

From figure A 2.1, it is clear that the distance vector between chromophores differing in
phase by A¢, and in longitudinal displacement by Az, is

R = "[0] r(cos Ap— 1) +72[0] 7 sin Agp + EP[0] Az, (A 2.1)

expressed in the helix frame of the zeroth group.

Ficure A 2.1. The distance vector in the straight helix.

(b) The superhelix

In the superhelix, the distance vector joins points (0, ¢,) and Q' (P, ¢, + A¢p) (figure A 2.2)

and is obtained from
wQ@+R = 0w +w' Q. (A 2.2)

Now clearly the vector from the centre w of the helix to the point @ is

0@ = [0, 0] r cos g, +72[0, 0] 7 sin ¢,,, (A 2.3)
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fl017001 0,0l

1D, po+ AP

Ficure A 2.2. The superhelix distance vector. (The broken line depicts the line ¢ = 0.)

while that between the centres w and ” of the helix cylinder at @ and @ is
ww’ = I[0] R(cos A® — 1) +_J[0] R sin A® + K[0] AzS (A 2.4)
by analogy with (A 2.1), and this can be transformed to the {#"[0, 0]} frame by the matrix o™,

ww’ = #1[0,0] R(cos A®— 1)+ 1[0, 0] (RS sin A® — AzSC) + kn [0,0] (RC sin AD + AzS?).
(A 2.5)
Finally,

W' Q = P[®,0]7 cos (go+Ag) +[D, 0] 7 sin (¢, +Ap), (4 2.6)

and this must be transformed into the {f[0,0]} frame, using A™M~*(A®) h, before being
substituted into (A 2.2), together with (A 2.3) and (A 2.5), to give

R = *[0,0]{R [cos A® — 1] —r cos p, +7 cos (¢, + A¢p) cos AD
—rsin (¢, +Ag) S sin A}
+71[0,0]{RS sin A® —AzSC—r sin ¢,
+7 cos ($y+Ag) S sin AD
+7sin (¢, +A@) [$? cos AD + C?]}
+ £"[0,0]{RC sin A® + AzS?+r cos (¢, + Ag) C sin AD
+7sin (¢, +Ag) [cos AD — 1] SC}. (A 2.7)

This is then transformed, by using A2 M(¢,) (39), to the proper frame {£*[0, ¢,]} of the zeroth
chromophore, in which we evaluate the optical activity.

(¢) The supersuperhelix

In the supersuperhelix, the distance vector joins points Q(0, D, ¢,) and Q' (P’, P, + AP,
¢, +A¢) (figure A 2.3) and is obtained from

Qu+wQ+R =2 +Qw +w'Q, (A 2.8)

32-2
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where
wQ = [0, D, 0] r cos p,+[0, D,, 0] 7 sin @, (A2.9
Qw = 1[0,0] R cos D, +_J[0,0] R sin ®, | (
QQ' = F[0] R (cos @ —1) + J'[0] R’ sin @ + K'[0]D'P' /2, (
Qo' = [[& 0] R cos (D, + AD) + J[®', 0] R sin (D, + AD), (A 2.12
W' Q =[P, B +AD,0]7 cos (¢, +Ap) + [P, D+ AD, 0] 7 sin (¢, +A). (

(22 and Q' are the centres of the superhelix cylinder at ¢ and @’.) Vectors (A 2.10)—(A 2.13)
are transformed with the use of appropriate matrices, and substituted into (A 2.8) to give R
in the helix frame {f*[0, @, 0]}. This is then transformed to the proper frame {Z*[0, @, ¢,] of
the zeroth chromophore.

supersuperhelix 4

Ficure A 2.3. The supersuperhelix distance vector (schematic).

APPENDIX 3. METRIC ANALYSIS OF THE SUPERCOILED HELIX CYLINDER
(a) Derwvation of the curved cylinder metric

For a straight helix, the (flat) metric of the surface of the circumscribed cylinder is
ds? = r*d¢®+dz?, (A 3.1)

where z is the displacement measured along the central axis of the helix cylinder, and ds is
the displacement, measured on the surface of the cylinder, produced by coordinate changes
d¢ and dz. The metric coefficients are g4, = 1%, g,, = 1.

For the supercoiled helix, the corresponding (curved) metric is

ds? = Pdg? +g,,(¢) dz? (A 3.2)

where g,, is now ¢-dependent, being larger on the stretched outside of the cylinder (where
displacements along z make a larger contribution to the total distance ds), and smaller on the
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F16Ure A 3.1. The supercoiled helix cylinder, showing the axes z at its centre and 2’ (¢) at its surface, and the straight
helix cylinder (with axis zp,), whose surface is the tangent flat space to the curved surface of the supercoiled
helix cylinder.

compressed underside (where displacements along z make a smaller contribution to ds); the
contribution of d¢ to ds is unaffected because the cylinder cross section remains circular and
SO g44 = 1* as before.

The curved surface of the bent cylinder can be made to appear (locally) Euclidean by
transformation from z to z’, which is the local longitudinal axis, parallel to z but on the surface
of the helix cylinder instead of at its centre (figure A 3.1). The metric of this tangent flat space is

ds® = r2d¢p® +dz’?, (A 3.3)

which is the same as that of the straight helix cylinder.
A general Riemannian metric g, is related to the local Euclidean metric gap DY
0
G = v o S i
(Atwater 1974), giving in this case (at constant ¢, for the one-dimensional metric ds? = g,, dz?
and its Euclidean counterpart ds? = dz’2),

82(9) = (izz/)z. (A 3.5)

The transformation relating z and z’ must therefore be found.

Just as the central z-axis of the helix cylinder itself forms a helix on the surface of the superhelix
cylinder (radius R, angular coordinate @, central axis Z), so the local z’ axis, at a given ¢,
also forms a helix but on a different (co-axial) cylinder of radius @, angular coordinate ¥ (figure
A 3.2). This z’ cylinder has

dz? = Q*d¥?*+dZ?, (A 3.6)

where all differentials are evaluated at constant ¢.
The radius vector of a point P(®, ¢) with respect to the centre W of the z’ cylinder (figure
A 3.2) is clearly
Q = (R+7 cos@) [[®@] +1S sin ¢ J{D], (A 3.7)
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Ficure A 3.2. The superhelix cylinder (2ngular coordinate @) on which the helix axis z forms a helix, and the
larger, co-axial, cylinder (angular coordinate ¥) on which z’ forms a helix.

so the magnitude of the radius is
Q = [(R+7 cos @)+ (rS sin ¢)?]:. (A 3.8)

The coordinates of P(®D, @) on the z’ cylinder are seen to be

Z =z85—rCsin @, (A 3.9)
Y ==@+cos ' [[(D) Q/Q] = D+cos™ [(R+7 cosp)/Q]. (A 3.10)
But at constant ¢
dZ =S8dz, d¥ =d® = (C/R)dz, (A 3.11)
so, from (A 3.6),
dz’? = dz2{(QC/R)*+ 5%}, (A 3.12)

and from (A 3.5)

gz = (QC/R)*+§*
=1+4+2(r/R) C? cosp+ (r/R)? C*(cos® p+ S5 sin% ). (A 3.13)

This gives, to first order in /R, the metric
ds? = r2d¢p2+[14+2(r/R) C? cos ¢] dz? (A 3.14)

for the surface of the supercoiled helix cylinder. The helix follows a straight path on the surface
of the cylinder, and for a straight helix this path is defined by the constancy of the helix angle,

tanay,, = dz/rd¢p = p/2nr. (A 3.15)
In the supercoiled helix the local helix angle
tan alo¢ = gt dz/rd¢p = [1+2(r/R) C? cos p]} tan oy, (A 3.16)

varies with ¢, being larger on the stretched outside of the cylinder, and smaller on the
compressed inside. This is because of the curvature of the cylinder, which we now calculate.
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(b) The Riemann curvature of the supercotled helix cylinder

The Riemann curvature tensor is defined (Atwater 1974) by
REox = Uod Gad = U3 5ot + 0,00 — 0ot (A 3.17)
where {z’y} = _lz_gav (g/)’v,y +gvy,/i—gﬂy, v) > (A 318)

these are the Christoffel symbols. It can be contracted to give the Ricci tensor
(sign convention as in Misner et al. 1973) and the Riemann curvature scalar
REWY = ¢*FR . (A 3.20)

In this case we have

= 72 0 v — 1/72 0
g/w_[() [14+2(r/R) C? cos¢]]a g _[ 0 [1+2(/R) C? COS¢]_1] (A 3.21)

so the only non-zero Christoffel symbol is

{ZZ¢} =388, = — (r/R) C*sing [1+2(r/R) C* cos p]™* (A 3.22)

and the Riemann curvature scalar is therefore
R () = (C?/rR) cos¢p [1+2(r/R) C? cos p] %, (A 3.23)

to first-order in (r/R).

The curvature is positive on the stretched outside (|¢| < in), negative on the compressed
underside (3n < |¢| < m) that forms a saddle-point at ¢ = 180°, and zero at | @ | = in, where
the cylinder is Euclidean; also, it is stronger on the underside (cos ¢ < 0), and is independent
of the superhelix handedness (C = cos &g, is proportional to x, but appears squared).

APPENDIX 4. VARIATION OF DNA C.D. WITH SECONDARY STRUCTURE AND
TRANSITION MOMENT ORIENTATION

Because the optical activity (and its variation with superhelix density) is dependent, in the
exciton model, on the orientation of the transition dipoles as well as on the helicity of the DNA
helix, and because we invoke a change in secondary structure to explain the c.d. of supercoiled
DNA, itis important to understand the physical reasons for the variation of c.d. with secondary
structure.

The most widely discussed secondary structures are of course the A- and B-forms. The
difference between the conservative B spectrum and the non-conservative A spectrum was
originally attributed, by Johnson & Tinoco (1969) and others (Tinoco 1962; Fasman &
Cowman 1978), to strong base tilting in the A-form, but Moore & Wagner (1973) showed that
the major factor is actually the displacement, D, of the base-pair from the helix axis, which
is very different in the two forms (figures A 4.1a,b). We believe, however, that this is better
expressed in terms of the inter-helix phase difference, ¢y,,, which determines D, and is related
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492 ALEXANDRA J. MAcDERMOTT

to the orientation @ of the average transition moment #* with respect to i (figure A 4.1¢);
consideration of ¢, and @ greatly facilitates physical explanation of the trends noted by Moore
and Wagner. Moreover, these authors do not show the conservative and non-conservative
contributions separately, although this is important here because of their very different
variation with superhelix density (table 3).

7t

FiGUrE A 4.1. (a) Cross section of A-DNA. (b) Cross section of B-DNA. (¢) The base orientation @, and the
inter-strand phase difference @y,

Figure A 4.2 shows the computed conservative and non-conservative contributions (thin
lines) to the total spectrum (thick line) for various secondary structures. (The spectra extend
to three standard deviations w on either side of the absorption wavelength (see 12)), which
corresponds to the 210-310 nm region around the 260 nm absorption. C.d. units are arbitrary,
serving only to indicate relative magnitudes and shapes.) The vertical axis shows c.d. spectra
as a function of @ for ‘planar’ forms (zero Euler angle £), in which

O =a+y+0. (A 4.1)

The line d,,, joining the paired bases ny and ny is clearly at a fixed angle to the local axis floc,

regardless of the orientation of the base-pair. The angle 6 between the transition moment, #*,
and #1°¢, is fixed by the percentage of A-T, so the angle K between #* and d,,, (figure A 4.1¢)
is also constant for all @ at a given base composition, and can be shown (MacDermott 1981)
from atomic coordinates (Arnott et al. 1969) to be 113.6° for 50%, A-T (6 = —4.08°). The
phase difference and radius for a given transition moment orientation @ are then obtained from

| fpp| = 2(K—90°+]0|) (A 4.2)
r=dyp/2 sin (3] Py |) (A 4.3)

(in DNA the V-helix lags behind the T-helix, so @ and ¢y, are always negative). Figure A 4.2
also shows the c.d. as a function of 8 at constant @ for the @ values characteristic of A- and
B-DNA.
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cd.
e 0°
¢ vp—4172°
wavelength ;§ E

-61.78°
-30° 8 -18° -6° V planar A 6° AV [19.21°
-2962%yr -1775° ~-591° 591° 18.94° 2962°

<

30°

6 -40°
b bp—127.2°

;LW V] 3'18° B |6° ’12" 21° 30°
-960°Y -544° 1.76° 3.56° 6.41° 9.60°

Ficure A 4.2. Calculated c.d. spectra as a function of in-plane base orientation @, and out-of-plane tilt .

(a) The role of in-plane orientation, @, and inter-helix phase difference ¢y,

Three main features are apparent in figure A 4.2.

First, spectra at small |@| (A-like structures) not only show a larger non-conservative
component, but are also generally stronger than at larger | @ | (B-like structures). This is because
in B-DNA the c.d. from interaction with group 2 enhances the effect of interaction with group 1,
but is cancelled by that from groups 3 and 4, giving an overall c.d. that reflects mainly
interaction with group 1; but in A-DNA, the contributions from n = 3 and 4 augment those
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from n = 1 and 2, resulting in a much larger overall c.d. The explanation (MacDermott 1981)
is that the component R} of the distance vector in the transition frame (and hence the helicity
of the interaction) changes sign after n = 2 for large | @ |, but not until after n = 4 for smaller
|O|.

Second, B-DNA has only a very small non-conservative component. Table A 4.1 shows that
this is because of near-cancellation of the (actually quite sizeable) intrastrand (TT) and
interstrand (TV) contributions at this particular ¢,,,,. Their signs are the same for lower | @y, |
(A-like forms) but opposed for larger | ¢y, |. Thus, for A-DNA (@ = —7.52°, ¢,,, = —61.78°),
exciton jump from O to groups ny and ng will usually have the same helicity because the phase
difference of these groups is small. In B-DNA, however (@ = —61.94°, ¢, = —171.52°), the
near 180° phase difference of ny and ng leads to interactions of opposite helicity, and hence
the observed T'T—TV cancellation for non-conservative interactions (MacDermott 1981). Also,
it is only when ¢,, ~ 180° that the TT and TV contributions are even comparable in
magnitude; TV interactions are generally much smaller than TT interactions. This is because
the phase lag of the V-helix means that TV interactions tend to have less helicity (MacDermott
1981). Thus, for the leading interactions (with n = 1 and 2) one finds, for most values of | ¢y, |,
a rather small O —ny phase separation, so that the path of exciton jump is almost directly
forward, with little helicity ; similarly, the O, —~—ny, phase separation is too large for a significant
chiral effect; but the Op—> + 15 and Op— + 24 phase separations give exciton jumps with
helicity angles near the optimum (for high chiral effects) of 45°. Only when ¢, ~ 180° do
the Op—>np and Op—>ny phase differences become similar in magnitude, producing TT and
TV interactions of comparable chirality.

The third feature is that the non-conservative contribution is positive at small |@|, and
negative at very large | @ |, apparently undergoing a sign change near the region of B-like forms.
This can be accounted for (MacDermott 1981) by the dominant T'T interactions, in particular
the differing interactions with the +ny and —np groups. The conservative c.d. arises from
interactions between the same transition g, on different bases, so the cylindrical symmetry
of the helix ensures that transition dipoles on the +ny and —ng groups have an identical
relationship with the dipole on the O group, and so make equal contributions to the c.d. The
non-conservative c.d. arises from interactions between g,, on group O and many different
transitions f,;,, constituting overall a cylindrical polarizability, on another chromophore. If g,
is radial (@ = 0), it bears the same relationship to the polarizability cylinders on +ng and
—np, so these give equal contributions to the c.d. But for small, non-zero | @ |, this symmetry
between + npand —nqg is broken, so that their c.d. contributions become slightly different. This

TaBLE A 4.1. INTRASTRAND (T'T) AND INTERSTRAND (1T'V) CONTRIBUTIONS
TO THE C.D. OF A- AND B-DNA

2 Q2,(0g>n) Fne 3 Qy(0g > n)
n
(Zonservative) (non-conservative)
A TT —0.4747 0.2757
TV —0.2901 0.1335
total —0.7648 0.4092
B TT —0.2865 —0.0791
TV —0.1252 0.1079

total —0.4117 0.0288
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difference increases with | @], until, at |@ | = 45°, u,, again has a symmetrical relationship
with the two polarizability cylinders, this time producing equal and opposite c.d. contributions
from +np and —nq (because the distance vector component Rt (n) of the +ny group is equal
to the component R{(—n) of the —nq, group, and also Ri(rn) = R(—n)). The non-conservative
(TT) c.d. is therefore zero at | @ | = 45°, and becomes negative as | @ | is increased further.

It is clear that most base orientations give a non-conservative c.d. spectrum, and that the
conservative c.d. of B-DNA is the result of rather unusual geometric circumstances. The medium
value of @ makes the non-conservative TT contribution unusually small because of near-
cancellation between +np and —nq, and the near 180° phase difference ¢, not only gives
the T'T and TV interactions opposite sign, but also makes them closer in magnitude than usual,
producing very effective cancellation. Finally, the value of @ is also responsible (through
cancellation of contributions from groups in the first and second quadrants) for the relatively
small magnitude of the conservative contribution that remains after near-cancellation of the
non-conservative part. In A-DNA by contrast, the much smaller & means that the non-
conservative T'T interactions are larger (because of reinforcement of first and second quadrant
contributions), and augmented (because of the concomitant small ¢, ), rather than cancelled,
by the TV interactions, thus producing a large non-conservative spectrum.

(b) The role of out-of-plane tipping : twisting against tilting
Figure A 4.2 shows the c.d. of A- and B-family DNA as a function of the Euler angle, 3,
between the base-normal k'°¢ and the helix axis k%, which we term the tip angle. The tipping
of K¢ away from K" can be partitioned into tilting (1) and twisting (7), such that the
component of k'°¢ along k" is given by

cosff = cosyr cosT (A 4.4)

where (MacDermott 1981)
¥ = arccos {cos f§ [cos? f+sin?® £ sin® (x —3¢y,,) | 72} (A 4.5)
7 = arccos [cos? f+sin? f sin? (x — 3¢y, ) 2. (A 4.6)

Tilt and twist are very different properties, corresponding to rotation about mutually
perpendicular axes. This is illustrated in figure A 4.3a, which shows the planar form, in which
the line dy,, joining paired bases on the T- and V-helices is in a plane perpendicular to the helix
axis, as are the aromatic ring planes of the bases themselves. Tilting () is aArotation of d,,
out of this plane, so that d,,, is no longer perpendicular to the helix axis (and k'°¢ is no longer
coincident with Kn, although it remains in the Ieh/d,Op plane if no twist is present) (see also
figure 2). Twisting (7), however, is simply a rotation of the aromatic ring planes about d,,
which itself remains in the plane perpendicular to the helix axis (in the absence of tilt), although
the aromatic rings move out of this plane (E'°¢ moves out of the Ieh/dbp plane).

The sign convention for ¢ and 7 has led to much confusion. We regard ¢ or 7 as negative
if it makes 8 more negative (for g < 0, ko tips into the helix cylinder), and as positive if it
makes £ more positive (for § > 0, Kloc tips out of the helix cylinder). The negative ¢ for B-DNA
is illustrated in figare 2 (K'°° is not shown, but it is perpendicular to dy,;, in a direction
determined by 7). In figure A 4.2, therefore, we have taken both i and 7 as negative for negative
B, and positive for positive # (although it would, of course, be possible for ¢ and 7 to have
opposite signs if they affected £ in opposite directions).
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Our sign convention is the same as that of Arnott (1970), Arnott & Selsing (1975) and
Studdert & Davis (1974), but is opposite to that of Moore & Wagner (1973) and Johnson
etal. (1981), the latter authors having apparently taken data from Arnott & Selsing (1975) but
changed the sign. We consider that our convention is the least confusing because the signs
of ¢ and 7 follow that of the Euler angle # which is unambiguously fixed (8 > 0 if £ moves
towards 7).

K<

FicURE A 4.3. Partition of § between ¢ and 7; (a) ¥ and 7 correspond to rotations about perpendicular axes,
(b) B is a Y-type rotation in B-DNA, (¢) g is a 7-type rotation in A-DNA.

The Euler angle £ is a rotation about f,, which is the " axis rotated through the Euler angle
a about kP, so that partition of p into ¥ and T depends on whether f, is more nearly
perpendicular or parallel to dy,;;. which in turn depends cn the values of @ and @,,,. This explains
the crucial role of « —3¢y,, in (A 4.5) and (A 4.6). We see from figures A 4.34,¢ that the values
of « and 3¢y, are such that, for B-DNA, rotation about f, is a 7-type rotation (f, being almost
parallel to d,,,) while for A-DNA, this rotation is of ¥-type (j, being almost perpendicular
to dyy). In quantitative terms, for A-DNA (a = 49.14°, }¢,, = —30.89°) we have
(@ —3Ppp) = 90°, ie. 72 0 (from (A 4.6)); so f ~ ¢ (from (A 4.4) or (A 4.5)). For B-DNA
(@ =—102.89°% 3¢y, = —89.76°) we have (x—3¢y,) ® 0 (actually 16°), so ¥ is very small
and g = 7.

The strong f-sensitivity of the B-family c.d. in figure A 4.2 is thus a sensitivity to changes
in 7, while the f-insensitivity of the A-family c.d. indicates that ¥ has almost no effect on DNA
c.d. (Note that the spectra of ‘real” and ‘planar’ A-DNA are almost identical, despite the huge
tilt, Y = 19.21°, of the former). The much stronger influence of twisting is in agreement with
the conclusion of Johnson et al. (1981) (although their results indicate a depressed c.d. for
negative instead of positive 7 owing to their opposite sign convention), but in disagreement
with Studdert & Davis (1974), who suggest that tilting is more important. However,
consideration of the geometry of the Watson—Crick base-pair shows beyond doubt that twisting
has more affect. The c.d. is determined by the orientation of the transition dipoles, i.e. by the
direction of #*, which is at a fixed angle K to d,, in a Watson—Crick base-pair (figure A 4.1¢).
If #* were parallel to d,,,, its direction would not be affected at all by a 7-type rotation about
d,,, but would be affected dramatically by the perpendicular y-type rotation. Similarly, if £*


http://rsta.royalsocietypublishing.org/

/

AL

THE ROYAL A
SOCIETY \

OF

=l )
52
=0
=
-9

oU
m<
o(’)
=%
Lod
o=

THE ROYAL A
SOCIETY LA

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

C.D. AS A MEASURE OF SUPERHELIX DENSITY 497

were perpendicular to dy,,, it would be affected only by 7-type rotations. Because K = 113.6°,
i'is nearly perpendicular to dy,,, and so its direction is altered very much more by 7-type than
by -type rotations (figure A 4.4), this being equally true at all values of ¢y, ,.

With increasing 7, the transition dipoles on the T- and V-helices point in increasingly opposite
directions, thereby affecting the balance between the T'T and TV interactions. At small or zero
7, the non-conservative TT and TV interactions in B-DNA cancel, but at large 7 of either sign,

Ficure A 4.4. The transition moment direction (and hence the c.d.) is more affected by 7 than by ¢ because it
processes through a much wider cone as 7 is varied.

they no longer do so, thus giving rise to a much larger non-conservative contribution. But the
overall effect (figure A 4.2) is for the c.d. of B-DNA to remain conservative at negative 7, while
becoming strongly non-conservative at positive 7. Thisis explained by the dominant conservative
TT interactions. For negative 7, the transition dipole on the O group tips forward towards
the other T dipoles, producing a large conservative TT interaction; for positive 7, the dipoles
tip backward, away from the other T dipoles, so that the conservative contribution gets smaller
(eventually going through a sign change), thus allowing the non-conservative part to become
dominant.

(¢) The effect of supercotling on different secondary structures

Table A 4.2 shows the variation in Ae(x)/Ae(0) with negative superhelix density (similar
variations, but in the opposite direction, occur for positive x) for some of the secondary structures
whose c.d. at zero superhelix density appears in figure A 4.2. The x-dependence follows a more
conservative pattern (increased c.d. for left supercoiling, see table 3) or a more non-conservative
pattern (slight increase, followed by large decrease in c.d. for left supercoiling) according to
whether the spectrum of the non-supercoiled form (A 4.2) is conservative (as for large | © | and
| ¢pp|) or non-conservative (small | @[ and | ¢y, ).

The amplitude of variation appears greater for large | @ | and for positive B. But the ratio
Ae(x)/Ae(0) is perhaps misleading in this respect, because in the B-family (table A 4.25) the
actual numerical variations in c.d. are roughly the same for all # (maximum increase in
conservative component ca. 0.04, maximum decrease in non-conservative component ca. 0.013).
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TABLE A 4.2 (a). Ae(x)/Ae(0) As A FUNCTION OF x FOR STRUCTURES WITH f = 0
AND VARYING O

x —0.1337 —0.12 —0.10 —0.08 —0.06 —0.04 —0.02

planar A O =-17.52° 1.006 0.993 0.986 0.995 1.006 1.010 1.007
0 =—-20° 1.001 0.982 0.974 0.985 0.997 1.003 1.004

O =—40° 0.995 0.985 0.983 0.999 1.014 1.018 1.012

planar B O =—-62° 1.007 1.068 1.097 1.133 1.144 1.121 1.068
0 =-170° 1.026 1.180 1.247 1.307 1.312 1.252 1.139

TABLE A 4.2 (b). Ae(x)/Ae(0) As A FUNCTION OF x FOR B-LIKE STRUCTURES (@ = —62°)
WITH VARYING [

x —0.1337 —0.12 —-0.10 —0.08 —0.06 —0.04 —0.02

standard B p=—6.21° 0.996 1.028 1.046 1.072 1.082 1.076 1.040
planar B pg=0° 1.007 1.068 1.097 1.133 1.144 1.121 1.068
p=+6° 1.042 1.120 1.260 1.330 1.343 1.279 1.154

This is because the c.d. changes arise from chiral torsion of the helix frame and changes in the
distance vector, which are independent of dipole orientation and depend only on superhelix
density; these changes are proportionately large if the original c.d. is small (as for positive f
or large | @), leading to a large variation in Ae(x)/Ae(0). In the case of large | @ |, however,
an additional effect operates; larger | @ | and | ¢y, | imply a smaller helix radius r (see (A 4.3)),
which implies stronger Riemann curvature (see (A 3.21)) and hence greater distortion on
supercoiling. Thus the maximum change in conservative c.d. is 0.04 for B-like forms
(r = 325 pm), but only 0.01 for A-like forms, which are less distorted by supercoiling because
of their larger radius (r = 595 pm).

The c.d. spectrum of chromatin, with its depressed positive lobe, which in §5 we attributed
to increased base-tipping, clearly has considerable non-conservative character; it might
therefore be thought that the computed variation with negative superhelix density in the
curvature-induced base-tipping model (equation (60) and figure 9: an increase at small x,
followed by a large decrease at large x) represents the typical non-conservative pattern.
However, the sharp decrease at large x does not represent the effect of supercoiling on the
increasing non-conservative element in the altered secondary structure: the decrease reflects
mainly the altered secondary structure itself (as g becomes positive, the dipoles tip
backwards, away from their T neighbours, giving a smaller c.d.).

(d) Varying transition moment orientation within a given secondary structure

Throughout this work we have taken the angle between ' and #°¢ to be 6§ = —4.08°,
calculated for the ‘average base’ at 50%, A-T by using one transition on A, T, G and C in
the 260-280 nm region (table 1). If more transitions were included in the averaging process,
a different 8 would be obtained, so in this section we examine the x-dependence of the c.d.
of B-DNA at varying 6.

We saw in §4 (¢) that the x-dependence of Ae(x) /Ae(0) depends on the c.d. at x = 0: it follows
a conservative (increased c.d. for left supercoiling) or non-conservative (slight increase followed
by large decrease for left supercoiling) pattern according to whether the original c.d. is
predominantly conservative or non-conservative, and the amplitude of variation appears
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proportionately larger if the original c.d. is smaller. Further, we saw in §4 (a) that the c.d. at
x = 0is determined by @ (small | @ | means large c.d. because of intra-turn augmentation rather
than cancellation), ¢y, (spectrum conservative near ¢, = 180°, because of non-conservative
TT-TV cancellation) and 7 (small » means large distortion on supercoiling). Variation of 6
within a B structure corresponds to variation of @ at constant ¢y, and 7, so one expects the
x = 0 c.d. spectra for different 6 to follow a similar trend to that for varying @ in figure A 4.2,
except that they should deviate less from the B-type spectrum since only @, and not ¢, or
r, is changed. Thus, planar B-DNA (6@ = —61.94°, ¢, = —171.52°, # = 0) with 6§ = —4.08°
has conservative and non-conservative contributions 0¢ = —0.30, O"¢ = —0.03, which for
planar A-DNA (@ = —7.52°, ¢, = —61.78°, f =0, § = —4.08°) change to 0° = —0.58,
O"¢ = 0.32. But for planar B-DNA with 6 = 4 50.34°, corresponding to the A-like ® = —7.52°
(but still with ¢y,, = —171. 52°), one obtains 0¢ = —0.43, O"® = —0.09, representing a much
smaller change, especially in O™¢, which cannot become as large as in true A-DNA so long as
$pp remains in the TT-TV cancellation region around 180°. Nevertheless, 0" has at least
become large enough, compared to OF to produce a ‘non-conservative’ x-dependence in
Ae(x)/Ae(0) for planar B with A-like @; but because the radius retains its small B-like value,
the amplitude of variation is greater (minimum Ae(x)/Ae(0) = 0.94) than in true A-DNA
(minimum Ae(x)/Ae(0) = 0.98).

Because the transitions in table 1 are the most important contributors to the c.d. at
260-280 nm, any additional transitions from neighbouring regions (e.g. the 240-250 nm
transitions in A and G) would be given less weight in the averaging process, so a more accurate
6 would be unlikely to produce an A-like @, and it is more pertinent to consider smaller § values.
As expected, the trends in the computed Ae(x)/Ae(0) for varying 6 are similar to those in table
A 4.2, but less pronounced, because only @, and not ¢bp or r, is varied. Thus, if additional
transitions make f(and hence @) more negative, one expects a smaller c.d. at x = 0, and hence
a larger amplitude for the (conservative-type) variation in Ae(x)/Ae(0). For example, at
0 = —25°, corresponding to @ = —83° (cf. ©® = —62° for § = —4.08°), one obtains a maximum
increase of 159, (cf. only 8%, for § = —4.08°), but no decrease at high x; when base-tipping
is introduced according to (60), a decrease to Ae(x)/Ae(0) = 0.51 is obtained, suggesting that
for more negative € a smaller degree of supercoiling-induced base-tipping, f’, will suffice to
reproduce the observed Ae(x) /Ae(0) = 0.70. Ifadditional transitions make 6 more positive (e.g.
the 240-250 nm transitions on A and G at & 4+90°), a more non-conservative pattern is
expected, i.e. decreased Ae(x)/Ae(0) at high x. Thus, for § = +25° (@ = —33°), the maximum
reduction in Ae(x)/Ae(0) is 0.96, which base-tipping further reduces only to 0.94 (a positive
0 increases K, so that base-twisting has less effect) indicating that a larger #” might be necessary.
However, these computations employ F*¢ = 0.6777, calculated for the table 1 transitions;
additional transitions would, from (48), reduce P(c) and hence increase F™°. This could result
in a much larger non-conservative component, and hence a larger decrease in Ae(x)/Ae(0) at
high x, thus reducing the need for a larger f’.

Inclusion of other transitions should thus improve agreement with experiment (giving a larger
increase at small negative x, and a sharper decrease at large x) if 6 becomes more negative,
and probably maintain agreement at large x (with perhaps a larger £’, depending on how
the transitions are weighted) for small positive 6, although the increase at low x may be lost.
Taking just one transition on each base (table 1) is therefore a reasonable approximation,
especially because it is not immediately obvious how other transitions should be weighted in
calculating P(c).
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Glossary of symbols

o conventional superhelix density (number of superhelical turns per 10
base-pairs)
x geometrical superhelix density (number of superhelical turns per
helical turn)
X supersuperhelix density (number of supersuperhelical turns per super-
4 helical turn)
\J‘ k number of base-pairs per turn of double helix
- Ae circular dichroism (c.d.)
;5 S Ae() c.d. of DNA of superhelix density x
o]l Ae(0) c.d. of straight, non-supercoiled DNA
=
= O VoA frequency of polymer transition O ->A
E 8 VOAK frequency of polymer transition O — A (state A is split into exciton
o levels Ay)
5z Ry, rotational strength of polymer transition O - A
Eg Roax .rotational strength of polymer transition O - Ay
FE
8‘2 o, standard deviation in frequency units
Eé u frequency in units of standard deviations, o,, from the absorption
Sl frequency vg,
O, standard deviation in wavelengths
w wavelength in units of standard deviations
Sflu) or flw) non-conservative line-shape (Gaussian) as a function of frequency or
wavelength
S (u) or f'(w) conservative line-shape (first derivative of Gaussian) as a function of

frequency or wavelength

vV, frequency of transition o—a on individual monomers

Hioa electric dipole transition moment for transition o—a on monomer ¢
A n magnitude of u;,,
:/]*ij Vioa;job interaction potenti‘a.l between electric dipolej transition .n‘loments Hioa
< and g, for transition o—>a on monomer ¢ and transition o—>b on
S > monomer j
® : R distance vector between monomers 7 and j
e (BJ)ne polarizability tensor of monomer j that appears in expression for
E O non-conservative c.d. contribution
—~ 8 (B¢ conservative analogue of polarizability of monomer j

ore o¢ total non-conservative and conservative contributions to the c.d.

o geometric factor in c.d. contribution from interaction of transition

moment on zeroth group with transition moment on jth group; sum-
mation over j and multiplication by a numerical factor gives O"¢

and O°¢

unit vector in direction of transition moment on zeroth group

PHILOSOPHICAL
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OF
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P matrix relating proper frame of jth group to proper frame of zeroth
group
R distance vector from zeroth group to jth group
Q(0p—>ng) geometric factor in contribution to c.d. from interaction between

zeroth group and its nth neighbour on the same (i.e. T-) strand of the
double helix

Q(0p—>ny) geometric factor in contribution to c.d. from interaction between
zeroth group and its nth neighbour on the other (i.e. V-) strand of

the double helix (the two identical and equivalent helices are

\\j/ ‘

. ~ arbitrarily named T and V)

< Q(OF —nyp) geometric factor in c.d. from interaction of zeroth group of m-type and
> E its nth neighbour (in the superhelix, the zeroth group may assume one
Cod (45 of 10 different helical phases, denoted by the index m)

s G Q geometric factor in contribution to c.d. from an arbitrary pair of
anl@) interacting groups

=w Q, gth component of 2 divided by the polarizability component B, (see
29 (22))

%O Qne Qc geometric factors in non-conservative and conservative c.d. contribu-
85 . tions from an arbitrary pair of interacting groups

85, o a, = B,, = B,, in-plane polarizability (perpendicular to l::tA)

=I<Zz o = By out-of-plane polarizability (in direction of k?)

EE Fne ratio of numerical factors multiplying total non-conservative and

conservative geometric factors to give total c.d. contributions O™° and
0°¢ (equations (47) and (48)). Because only relative values of non-
conservative and conservative contributions required, total non-
conservative geometric factor 2, is multiplied by F1¢ to give O™¢, and

total conservative geometric factor X, is put equal to O°¢ (equation
51))

[0) phase round helix cylinder
unit vector radial to helix cylinder

p e unit vector tangential to helix cylinder
kn unit vector longitudinal to helix cylinder
a {i" o]} triad of unit vectors radial, tangential, and longitudinal to helix
< S cylinder at phase ¢
S ~ M(¢) matrix that rotates {#1[0]} through ¢, about k1, into {#"[¢]}
[ E {#°°[¢]} local frame in which B"¢ is diagonal
S50 @) L matrix that rotates local frame {#1°°[¢]} into helix frame {f"[¢]}
= O a, B,y Euler angles relating helix axes to local axes
== it direction of electric dipole transition moment for monomer transition
)
<Z o—>a.
%9 0 angle between #1°¢ and #*
82) s t matrix that rotates transition frame {*[¢]} into local frame {'°°[¢]}
8% A =Lt matrix that rotates transition frame {f*[¢]} into helix frame {f"[¢$]}
§'§ {t%[0]} transition frame (in which B¢ is diagonal) of zeroth group of T-helix
o=

33 Vol. 313. A
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{B}Y, =B
By,

P(Op<n)

{"[D, 61}

xS~

o)

h

r

P

a, = tan™! (p/2mr)
R

P

ag, = tan™! (P/2nR)
C = cosag, = 2nRx/p
S =sinag,

o

$(0%)

¢/
o, o1}

r
e

H

R
P

Ao = tan”! (P /2RR’)
C’ = cos aggy

§ =sina
¢0

D (0M)

ssh

ALEXANDRA J. MacDERMOTT

polarizability of a group in the frame in which it is diagonal, i.e. its
proper frame (its transition frame)

polarizability of the nth group in its own transition frame
polarizability of the nth group in transition frame of zeroth group on
T-helix, i.e. in the frame in which c.d. is evaluated

matrix that transforms {B}!, into {B}gT’ i.e. rotates proper frame of nth
group into that of O group

matrix that reverses y and z axes of {# [@]} to give {i% [¢]}; used for
inter-strand interactions (the T- and V-helices are anti-parallel)

phase round superhelix cylinder

helix frame at superhelical phase @ and helical phase ¢

unit vector radial to superhelix cylinder

unit vector tangential to superhelix cylinder

unit vector longitudinal to superhelix cylinder

triad of unit vectors radial, tangential, and longitudinal to superhelix
cylinder at superhelical phase &

matrix that rotates helix frame {f*[®, 0]} into superhelix frame {{[®]}
radius of helix

pitch of helix

helix angle

superhelix radius

superhelix pitch

superhelix angle

helical phase of zeroth group
helical phase of zeroth group of type m on T-helix (in the superhelix
there are 10 types of chromophore site, distinguished by the index m)

phase round supersuperhelix cylinder

superhelix frame at supersuperhelical phase @’ and superhelical
phase @

unit vector radial to supersuperhelix cylinder

triad of unit vectors radial, tangential and longitudinal to supersuper-
helix cylinder at supersuperhelical phase &’

matrix that rotates superhelix frame {f[@’,0] into supersuperhelix
frame {F'[®']}

supersuperhelix radius

supersuperhelix pitch

supersuperhelix angle

superhelical phase of zeroth group
superhelical phase of zeroth group of type M
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{#*[0]}
{0, @1}

{#'[0, D, $,)

A¢
Az

AD
AD = XAD
Ag(0p—>nq)

A¢(Op—>ny)

¢bp = A¢(np—>ny)
d,,

dop

{R}'[0]

{R}'[0, ¢,]

B

ﬂ sh

'8/

Reurv ( ¢)

QD

N e

proper frame of zeroth group (transition frame at zero helical phase),
in which helix c.d. is evaluated

proper frame of zeroth group (transition frame at zero superhelical
phase and helical phase ¢,), in which superhelix c.d. is evaluated
proper frame of zeroth group (transition frame at zero supersuper-
helical phase, superhelical phase @, and helical phase ¢,), in which
supersuperhelix c.d. is evaluated

difference in helical phase between a pair of interacting chromophores
(zeroth and nth groups)

difference in longitudinal displacement (along helix axis) between a
pair of interacting chromophores

difference in superhelical phase between interacting groups
difference in supersuperhelical phase between interacting groups
difference in phase between groups O and g on same strand of double
helix

difference in phase between groups 0y and ny, on opposite strands of
double helix

phase difference between paired bases

vector joining paired bases zy and ny

magnitude of dy,,

distance vector expressed in {#*[0]} frame (to evaluate helix c.d.)

distance vector expressed in {#*[0, ¢ ]} frame (to evaluate superhelix
c.d.)

Euler angle £ (‘tip angle’ of base-pair) in straight helix
tip angle in supercoiled helix
maximum additional tipping that occurs when helix is supercoiled

Riemann curvature scalar of surface of supercoiled helix cylinder at
helical phase ¢

angle between #1°¢ and £t

angle between " and 7t
ot

angle between 7* and dy,,

angle of base-tip (Euler angle between k" and k')

angle of base-tilt
angle of base-twist
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